Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Traffic ; 19(8): 605-623, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29696751

RESUMO

Plasmodium falciparum, which causes malaria, extensively remodels its human host cells, particularly erythrocytes. Remodelling is essential for parasite survival by helping to avoid host immunity and assisting in the uptake of plasma nutrients to fuel rapid growth. Host cell renovation is carried out by hundreds of parasite effector proteins that are exported into the erythrocyte across an enveloping parasitophorous vacuole membrane (PVM). The Plasmodium translocon for exported (PTEX) proteins is thought to span the PVM and provide a channel that unfolds and extrudes proteins across the PVM into the erythrocyte. We show that exported reporter proteins containing mouse dihydrofolate reductase domains that inducibly resist unfolding become trapped at the parasite surface partly colocalizing with PTEX. When cargo is trapped, loop-like extensions appear at the PVM containing both trapped cargo and PTEX protein EXP2, but not additional components HSP101 and PTEX150. Following removal of the block-inducing compound, export of reporter proteins only partly recovers possibly because much of the trapped cargo is spatially segregated in the loop regions away from PTEX. This suggests that parasites have the means to isolate unfoldable cargo proteins from PTEX-containing export zones to avert disruption of protein export that would reduce parasite growth.


Assuntos
Malária Falciparum/parasitologia , Parasitos/metabolismo , Plasmodium falciparum/metabolismo , Transporte Proteico/fisiologia , Proteínas de Protozoários/metabolismo , Animais , Eritrócitos/parasitologia , Humanos , Malária Falciparum/sangue , Camundongos , Vacúolos/parasitologia
2.
Mol Ther ; 26(1): 95-104, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29103909

RESUMO

The chemokine CCL17, mainly produced by dendritic cells (DCs) in the immune system, is involved in the pathogenesis of various inflammatory diseases. As a ligand of CCR4, CCL17 induces chemotaxis and facilitates T cell-DC interactions. We report the identification of two novel RNA aptamers, which were validated in vitro and in vivo for their capability to neutralize CCL17. Both aptamers efficiently inhibited the directed migration of the CCR4+ lymphoma line BW5147.3 toward CCL17 in a dose-dependent manner. To study the effect of these aptamers in vivo, we used a murine model of contact hypersensitivity. Systemic application of the aptamers significantly prevented ear swelling and T cell infiltration into the ears of sensitized mice after challenge with the contact sensitizer. The results of this proof-of-principle study establish aptamers as potent inhibitors of CCL17-mediated chemotaxis. Potentially, CCL17-specific aptamers may be used therapeutically in humans to treat or prevent allergic and inflammatory diseases.


Assuntos
Aptâmeros de Nucleotídeos/genética , Quimiocina CCL17/genética , Quimiotaxia/genética , Quimiotaxia/imunologia , Dermatite de Contato/genética , Dermatite de Contato/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Aptâmeros de Nucleotídeos/química , Movimento Celular/genética , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Conformação de Ácido Nucleico , Técnica de Seleção de Aptâmeros
3.
Glia ; 66(10): 2246-2261, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30277599

RESUMO

Chemokines are important signaling molecules in the immune and nervous system. Using a fluorescence reporter mouse model, we demonstrate that the chemokine CCL17, a ligand of the chemokine receptor CCR4, is produced in the murine brain, particularly in a subset of hippocampal CA1 neurons. We found that basal expression of Ccl17 in hippocampal neurons was strongly enhanced by peripheral challenge with lipopolysaccharide (LPS). LPS-mediated induction of Ccl17 in the hippocampus was dependent on local tumor necrosis factor (TNF) signaling, whereas upregulation of Ccl22 required granulocyte-macrophage colony-stimulating factor (GM-CSF). CCL17 deficiency resulted in a diminished microglia density under homeostatic and inflammatory conditions. Further, microglia from naïve Ccl17-deficient mice possessed a reduced cellular volume and a more polarized process tree as assessed by computer-assisted imaging analysis. Regarding the overall branching, cell surface area, and total tree length, the morphology of microglia from naïve Ccl17-deficient mice resembled that of microglia from wild-type mice after LPS stimulation. In line, electrophysiological recordings indicated that CCL17 downmodulates basal synaptic transmission at CA3-CA1 Schaffer collaterals in acute slices from naïve but not LPS-treated animals. Taken together, our data identify CCL17 as a homeostatic and inducible neuromodulatory chemokine affecting the presence and morphology of microglia and synaptic transmission in the hippocampus.


Assuntos
Quimiocina CCL17/metabolismo , Hipocampo/imunologia , Neuroimunomodulação/fisiologia , Neurônios/imunologia , Animais , Quimiocina CCL17/genética , Quimiocina CCL22/metabolismo , Feminino , Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/patologia , Homeostase/fisiologia , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/imunologia , Microglia/patologia , Monócitos/imunologia , Monócitos/patologia , Neurônios/patologia , Receptores CCR4/metabolismo , Transmissão Sináptica/fisiologia , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA