Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Inorg Chem ; 29(3): 303-314, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38727821

RESUMO

This study demonstrates the potential of sono-photodynamic therapy as an effective approach for enhancing singlet oxygen generation using the synthesized Schiff-base diaxially substituted silicon phthalocyanines. In photochemical studies, the singlet oxygen quantum yields (Φ∆) were determined as 0.43 for Si1a, 0.94 for Q-Si1a, 0.58 for S-Si1a, and 0.49 for B-Sia1. In sono-photochemical studies, the Φ∆ values were reached to 0.67 for Si1a, 1.06 for Q-Si1a, 0.65 for S-Si1a, and 0.67 for B-Sia1. In addition, this study demonstrates the therapeutic efficacy of phthalocyanines synthesized as sensitizers on the PC3 prostate cancer cell line through in vitro experiments. The application of these treatment modalities exhibited notable outcomes, leading to a substantial decrease in cell viability within the PC3 prostate cancer cell line. These findings highlight the potential of utilizing these synthesized phthalocyanines as promising therapeutic agents for prostate cancer treatment.


Assuntos
Sobrevivência Celular , Indóis , Compostos de Organossilício , Neoplasias da Próstata , Bases de Schiff , Oxigênio Singlete , Humanos , Indóis/química , Indóis/farmacologia , Bases de Schiff/química , Bases de Schiff/farmacologia , Masculino , Oxigênio Singlete/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Compostos de Organossilício/química , Compostos de Organossilício/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Ensaios de Seleção de Medicamentos Antitumorais , Células PC-3 , Fotoquimioterapia , Processos Fotoquímicos , Linhagem Celular Tumoral , Estrutura Molecular
2.
Nanotechnology ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39173645

RESUMO

Drug-loaded polymeric micelles have proven to be highly effective carrier systems for the efficient delivery of hydrophobic photosensitizers in photodynamic therapy (PDT). This study introduces the micellization potential of poly(oligoethylene glycol methyl ether methacrylate) (pOEGMA) as a novel approach, utilizing the hydrophobic methacrylate segments of pOEGMA to interact with highly hydrophobic zinc phthalocyanine (ZnPc), thereby forming a potential micellar drug carrier system. The ZnPc molecule was synthesized from phthalonitrile derivatives and its fluorescence, photodegradation, and singlet oxygen quantum yields were determined in various solvents. In solvents such as tetrahydrofuran (THF), dimethyl sulfoxide (DMSO), and N,N-dimethylformamide (DMF), the ZnPc compound exhibited the requisite photophysical and photochemical properties for PDT applications. The pOEGMA homopolymer was synthesized via reversible addition-fragmentation chain-transfer (RAFT) polymerization, while ZnPc-loaded pOEGMA micelles were prepared using the nanoprecipitation method. Characterization of the pOEGMA, ZnPc, and micelles was conducted using FTIR, 1H-NMR, dynamic light scattering (DLS), matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometries, gel permeation chromatography (GPC), and transmission electron microscopy (TEM). The critical micelle concentration (CMC) was determined to be 0.027 mg/mL using fluorescence spectrometry. The drug loading and encapsulation efficiencies of the ZnPc-loaded micelles were calculated to be 0.67% and 0.47%, respectively. Additionally, the release performance of ZnPc from pOEGMA micelles was monitored over a period of nearly 10 days, while the lyophilized micelles exhibited stability for 3 months. Lastly, the ZnPc-loaded micelles were more biocompatible than ZnPc on L929 cell line. The results suggest that the pOEGMA homopolymer possesses the capability to micellize through its methacrylate segments when interacting with highly hydrophobic molecules, presenting a promising avenue for enhancing the delivery efficiency of hydrophobic photosensitizers in PDT. Moreover, it was also deciphered that obtained formulations were highly biocompatible according to cytotoxicity results and could be safely employed as drug delivery systems in further applications.

3.
Biotechnol Appl Biochem ; 71(3): 651-660, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38449083

RESUMO

Glycosaminoglycans (GAGs) serve as a biomarker for mucopolysaccharidoses disease. In this study, a novel fluorometric method was developed to measure total GAGs in urine. Graphene oxide (GO) and rhodamine B (RhB), a cationic fluorescent dye, were employed in the development of the method. RhB attaches to the GO surface via electrostatic attraction, leading to the quenching of its fluorescence upon the establishment of the RhB-GO complex. However, the presence of GAGs prompts a resurgence of intense fluorescence. The linear range of the method is between 5.00 and 70.00 mg/L. The total GAG levels of urine samples analyzed using the method agree with the results of the biochemistry analysis laboratory (65.85 and 79.18 mg/L; 73.30 ± 1.76 and 72.21 ± 2.21). The method is simple, accurate, and sensitive and may be used for both first-step diagnosis of the mucopolysaccharidoses and detection of individual GAGs for studies of GAG-related research and other biological applications.


Assuntos
Glicosaminoglicanos , Grafite , Grafite/química , Glicosaminoglicanos/urina , Glicosaminoglicanos/química , Humanos , Espectrometria de Fluorescência , Rodaminas/química , Corantes Fluorescentes/química , Fluorescência , Mucopolissacaridoses/urina , Mucopolissacaridoses/diagnóstico
4.
ACS Appl Bio Mater ; 7(5): 2725-2733, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38591733

RESUMO

Breast cancer is a life-threatening disease that is gaining increasing importance due to its rising incidence, highlighting the need for novel treatment methods with the least disadvantages. Recently, scientists have focused on developing therapeutic treatment modalities for effective cancer treatment. In contrast to conventional cancer treatment methods such as immunotherapy, surgery, chemotherapy, or radiotherapy, photodynamic therapy (PDT) is gaining prominence. Besides, sonodynamic treatment (SDT) is a noninvasive therapeutic approach that uses ultrasound to induce high tissue penetration. In both methods, sensitizers are activated to generate cytotoxic reactive oxygen species such as •OH and 1O2. In particular, the combined use of hybrid and complementary treatment methods has become an important modality in cancer treatment in recent years. Sono-photodynamic therapy (SPDT), which is an important method applied in combination with PDT and SDT, has started to be preferred in terms of reducing potential side effects compared to monotherapy. One of the most important types of sensitizers used in PDT and SDT is known as phthalocyanines (Pcs). Motivated by these facts, this research presents the sono-photochemical, in vitro cytotoxicity, and theoretical evaluation of water-soluble gallium phthalocyanine (GaPc). The results indicate that the quantum yield of the generation of singlet oxygen increased in sono-photochemical studies (ΦΔ = 0.94), compared to photochemical studies (ΦΔ = 0.72). In vitro analyses revealed that GaPc did not exhibit significant cytotoxic effects at the specified varying concentration doses (1-20 µM). Furthermore, GaPc-mediated SPDT triggered cell death by inducing reactive oxygen species formation in the breast cancer cell line (MCF-7). The interaction mechanism of the GaPc with EGFR and VEGFR2 target proteins, which are critical regulators of metastasis, proliferation, and angiogenesis, was investigated by molecular docking simulation. GaPc has effective binding affinities against target proteins, and this affinity was found to be the highest against VEGFR2. Molecular docking results showed a good correlation with the obtained biological results. Eventually, this molecular building of the efficient water-soluble phthalocyanine-based sensitizer is a potential therapeutic for PDT, SDT, and SPDT applications.


Assuntos
Antineoplásicos , Neoplasias da Mama , Ensaios de Seleção de Medicamentos Antitumorais , Indóis , Isoindóis , Fotoquimioterapia , Fármacos Fotossensibilizantes , Humanos , Indóis/química , Indóis/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/síntese química , Feminino , Tamanho da Partícula , Sobrevivência Celular/efeitos dos fármacos , Água/química , Teste de Materiais , Proliferação de Células/efeitos dos fármacos , Solubilidade , Gálio/química , Gálio/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Estrutura Molecular , Linhagem Celular Tumoral , Terapia por Ultrassom
5.
Turk J Chem ; 47(5): 1160-1168, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38173756

RESUMO

The term sonophotodynamic therapy (SPDT) refers to a combination of sonodynamic therapy (SDT) and photodynamic therapy (PDT), in which the efficacy of the treatment is boosted by utilizing the proper amount of a sensitizer that is responsive to both light and ultrasound. Although it has been proven in photophysicochemical studies that SPDT enhances singlet oxygen production, related studies in the literature are very limited. Considering this situation, this study aims to investigate the efficacy of synthesized phthalocyanines in terms of PDT and SPDT. The singlet oxygen quantum values calculated as 0.13 for 5, 0.44 for 6, and 0.61 for 7 in photochemical (PDT) application increased to 0.18, 0.86, and 0.92, respectively, with sonophotochemical (SPDT) application. According to the results, singlet oxygen production was more efficient with SPDT. This work will add to the body of knowledge on employing the SPDT approach to increase singlet oxygen generation.

6.
Turk J Chem ; 47(5): 1085-1102, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38173750

RESUMO

This study presents the synthesis of some metal {M = Zn(II), Lu(III), Si(IV)} phthalocyanines bearing chlorine and 2-(4-methylthiazol-5-yl) ethoxy groups at peripheral or axial positions. The newly synthesized metal phthalocyanines were characterized by applying FT-IR, 1H NMR, mass, and UV-Vis spectroscopic approaches. Additionally, the surface of gold nanoparticles was modified with zinc(II) and silicon(IV) phthalocyanines. The resultant nanoconjugates were characterized using TEM images. Moreover, the effect of metal ions and position of substituent, and gold nanoparticles on the photochemical and sonophotochemical properties of the studied phthalocyanines was investigated. The highest singlet oxygen quantum yield was obtained for the lutetium phthalocyanine by applying photochemical and sonophotochemical methods. However, the linkage of the zinc(II) and silicon(IV) phthalocyanines to the surface of gold nanoparticles improved significantly their singlet oxygen generation capacities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA