Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Swiss J Palaeontol ; 143(1): 22, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799181

RESUMO

Hutchemys rememdium is a poorly understood softshell turtle (Trionychidae) from the mid Paleocene of the Williston Basin of North America previously known only from postcranial remains. A particularly rich collection of previously undescribed material from the Tiffanian 4 North American Land Mammal Age (NALMA) of North Dakota is here presented consisting of numerous shells that document new variation, some non-shell postcrania, and cranial remains, which are described based on 3D models extracted from micro-CT data. Although the observed shell variation weakens previously noted differences with the younger species Hutchemys arctochelys from the Clarkforkian NALMA, the two taxa are still recognized as distinct. Parsimony and Bayesian phylogenetic analyses reaffirm the previously challenged placement of Hutchemys rememdium within the clade Plastomenidae, mostly based on novel observations of cranial characters made possible by the new material and the micro-CT data. The new topology supports the notion that the well-ossified plastron of plastomenids originated twice in parallel near the Cretaceous/Paleogene boundary, once in the Hutchemys lineage and once in the Gilmoremys/Plastomenus lineage. Hutchemys rememdium is notable for being the only documented species of trionychid in the mid Paleocene of the Williston Basin. The presence of multiple individuals in a carbonaceous claystone indicates this taxon lived in swamps and lakes and its expanded triturating surface suggests it had a durophagous diet. Supplementary Information: The online version contains supplementary material available at 10.1186/s13358-024-00315-8.

2.
New Phytol ; 190(3): 724-39, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21294735

RESUMO

• Paleobotanists have long used models based on leaf size and shape to reconstruct paleoclimate. However, most models incorporate a single variable or use traits that are not physiologically or functionally linked to climate, limiting their predictive power. Further, they often underestimate paleotemperature relative to other proxies. • Here we quantify leaf-climate correlations from 92 globally distributed, climatically diverse sites, and explore potential confounding factors. Multiple linear regression models for mean annual temperature (MAT) and mean annual precipitation (MAP) are developed and applied to nine well-studied fossil floras. • We find that leaves in cold climates typically have larger, more numerous teeth, and are more highly dissected. Leaf habit (deciduous vs evergreen), local water availability, and phylogenetic history all affect these relationships. Leaves in wet climates are larger and have fewer, smaller teeth. Our multivariate MAT and MAP models offer moderate improvements in precision over univariate approaches (± 4.0 vs 4.8°C for MAT) and strong improvements in accuracy. For example, our provisional MAT estimates for most North American fossil floras are considerably warmer and in better agreement with independent paleoclimate evidence. • Our study demonstrates that the inclusion of additional leaf traits that are functionally linked to climate improves paleoclimate reconstructions. This work also illustrates the need for better understanding of the impact of phylogeny and leaf habit on leaf-climate relationships.


Assuntos
Clima , Internacionalidade , Paleontologia , Folhas de Planta/anatomia & histologia , Calibragem , Fósseis , Geografia , Modelos Biológicos , Tamanho do Órgão , Filogenia , Chuva , Análise de Regressão , Especificidade da Espécie , Temperatura
3.
Nature ; 423(6935): 70-4, 2003 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-12721626

RESUMO

Late Cretaceous sediments from the Western Interior of North America yield exceptionally well preserved fossils that serve as proxies for the rapidly changing climate preceding the Cretaceous/Tertiary boundary (about 67-65 Myr ago). Here we reconstruct the ontogenetic history of a Maastrichtian-age fish, Vorhisia vulpes, by using the carbon, oxygen and strontium isotope ratios of four aragonite otoliths collected from the Fox Hills Formation of South Dakota. Individuals of V. vulpes spawned in brackish water (about 70-80% seawater) and during their first year migrated to open marine waters of the Western Interior Seaway, where they remained for 3 years before returning to the estuary, presumably to spawn and die. The mean delta(18)O from the marine growth phase of V. vulpes yields a seawater temperature of 18 degrees C, which is consistent with leaf physiognomy and general-circulation-model temperature estimates for the Western Interior during the latest Maastrichtian.


Assuntos
Migração Animal , Peixes/fisiologia , Fósseis , Modelos Biológicos , Animais , Dieta , Peixes/classificação , Sedimentos Geológicos , América do Norte , Água do Mar , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA