Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 38(12)2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28407331

RESUMO

Novel structures comprised of GaAs nanowire arrays conformally coated with conducting polymers (poly(3,4-ethylenedioxythiophene) (PEDOT) or poly(3,4-ethylenedioxythiophene-co-3-thiophene acetic acid) display both sensitivity and selectivity to a variety of volatile organic chemicals. A key feature is room temperature operation, so that neither a heater nor the power it would consume, is required. It is a distinct difference from traditional metal oxide sensors, which typically require elevated operational temperature. The GaAs nanowires are prepared directly via self-seeded metal-organic chemical deposition, and conducting polymers are deposited on GaAs nanowires using oxidative chemical vapor deposition (oCVD). The range of thickness for the oCVD layer is between 100 and 200 nm, which is controlled by changing the deposition time. X-ray diffraction analysis indicates an edge-on alignment of the crystalline structure of the PEDOT coating layer on GaAs nanowires. In addition, the positive correlation between the improvement of sensitivity and the increasing nanowire density is demonstrated. Furthermore, the effect of different oCVD coating materials is studied. The sensing mechanism is also discussed with studies considering both nanowire density and polymer types. Overall, the novel structure exhibits good sensitivity and selectivity in gas sensing, and provides a promising platform for future sensor design.


Assuntos
Técnicas de Química Analítica/instrumentação , Técnicas de Química Analítica/métodos , Nanofios/química , Polímeros/química , Temperatura , Compostos Orgânicos Voláteis/análise , Arsenicais/química , Gálio/química , Difração de Raios X
2.
Nano Lett ; 15(12): 7873-9, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26517289

RESUMO

We report the nanoscale quantification of strain in GaAs/GaAsP core-shell nanowires. By tracking the shifting of higher-order Laue zone (HOLZ) lines in convergent beam electron diffraction patterns, we observe unique variations in HOLZ line separation along different facets of the core-shell structure, demonstrating the nonuniform strain fields created by the heterointerface. Furthermore, through the use of continuum mechanical modeling and Bloch wave analysis we calculate expected HOLZ line shift behavior, which are directly matched to experimental results. This comparison demonstrates both the power of electron microscopy as a platform for nanoscale strain characterization and the reliability of continuum models to accurately calculate complex strain fields in nanoscale systems.

3.
Nanotechnology ; 26(22): 225604, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-25969429

RESUMO

Diameter-modulated nanowires can be used to impart unique properties to nanowire-based devices. Here, diameter modulation along Au-seeded GaAs nanowires was achieved by varying the flux of the III and V precursors during growth. Furthermore, three different types of [111]B-oriented nanowires were observed to display distinct differences in diameter modulation, growth rate, and cross-sectional shape. These differences are attributed to the presence of multiple distinct Au-Ga seed particle phases at the growth temperature of 420 °C. We show that the diameter modulation behavior can be modified by the growth conditions during nanowire nucleation, including temperature, V/III ratio, substrate orientation, and seed particle size. These results demonstrate the general viability of flow-controlled diameter modulation for compound semiconductors and highlight both opportunities and challenges that can arise from using compound-forming alloys to seed nanowire growth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA