Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 327(1): C113-C121, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38738312

RESUMO

During the process of decidualization, the stromal cells of the endometrium change dynamically to create a favorable environment for embryo implantation. Lysosome activity has often been associated with physiological changes in the endometrium during the preimplantation period and early pregnancy. In this study, the effect of para-nonylphenol (p-NP), an endocrine disruptor, on human immortalized endometrial stromal cells (tHESCs) was investigated. After exposure to p-NP (1 nM and 1 pM), the cells were examined for the decidualization markers connexin-43, insulin like growth factor binding protein 1 (IGFBP1), and prolactin. In addition, the effect of p-NP on lysosome biogenesis and exocytosis was investigated by examining the expression and localization of the transcription factor EB (TFEB) and that of the lysosomal-associated membrane protein 1 (LAMP-1). Finally, we evaluated the effect of p-NP on extracellular matrix (ECM) remodeling using a fibronectin assay. Our results showed that p-NP reduced the expression of prolactin protein, increased the nuclear localization of TFEB, and induced the increase and translocation of the lysosomal protein LAMP-1 to the membrane of tHESCs. The data indicate an impairment of decidualization and suggest an increase in lysosomal biogenesis and exocytosis, which is supported by the higher release of active cathepsin D by tHESCs. Given the importance of cathepsins in the processing and degradation of the ECM during trophoblast invasiveness and migration into the decidua, our results appear to be clear evidence of the negative effects of p-NP on endometrial processes that are fundamental to reproductive success and the establishment of pregnancy.NEW & NOTEWORTHY Endocrine disruptors, such as para-nonylphenol, affect the decidualization of human endometrial stromal cells with an impact on decidualization itself, lysosome biogenesis and exocytosis, and extracellular matrix remodeling. All these alterations may negatively impact embryo implantation with the success of reproduction and the establishment of pregnancy.


Assuntos
Endométrio , Lisossomos , Fenóis , Prolactina , Células Estromais , Humanos , Feminino , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Células Estromais/metabolismo , Células Estromais/efeitos dos fármacos , Fenóis/farmacologia , Fenóis/toxicidade , Endométrio/metabolismo , Endométrio/efeitos dos fármacos , Endométrio/citologia , Prolactina/metabolismo , Decídua/metabolismo , Decídua/efeitos dos fármacos , Decídua/citologia , Exocitose/efeitos dos fármacos , Implantação do Embrião/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Gravidez , Proteína 1 de Membrana Associada ao Lisossomo
2.
J Ultrasound Med ; 41(9): 2247-2258, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34877689

RESUMO

OBJECTIVES: Inferior vena cava (IVC) pulsatility quantified by the Caval Index (CI) is characterized by poor reliability, also due to the irregular magnitude of spontaneous respiratory activity generating the major pulsatile component. The aim of this study was to test whether the IVC cardiac oscillatory component could provide a more stable index (Cardiac CI-CCI) compared to CI or respiratory CI (RCI). METHODS: Nine healthy volunteers underwent long-term monitoring in supine position of IVC, followed by 3 minutes passive leg raising (PLR). CI, RCI, and CCI were extracted from video recordings by automated edge-tracking and CCI was averaged over each respiratory cycle (aCCI). Cardiac output (CO), mean arterial pressure (MAP) and heart rate (HR) were also recorded during baseline (1 minutes prior to PLR) and PLR (first minute). RESULTS: In response to PLR, all IVC indices decreased (P < .01), CO increased by 4 ± 4% (P = .055) while HR and MAP did not vary. The Coefficient of Variation (CoV) of aCCI (13 ± 5%) was lower than that of CI (17 ± 5%, P < .01), RCI (26 ± 7%, P < .001) and CCI (25 ± 7%, P < .001). The mutual correlations in time of the indices were 0.81 (CI-RCI), 0.49 (CI-aCCI) and 0.2 (RCI-aCCI). CONCLUSIONS: Long-term IVC monitoring by automated edge-tracking allowed us to evidence that 1) respiratory and averaged cardiac pulsatility components are uncorrelated and thus carry different information and 2) the new index aCCI, exhibiting the lowest CoV while maintaining good sensitivity to blood volume changes, may overcome the poor reliability of CI and RCI.


Assuntos
Coração , Veia Cava Inferior , Volume Sanguíneo , Débito Cardíaco , Humanos , Reprodutibilidade dos Testes , Veia Cava Inferior/diagnóstico por imagem
3.
Int J Mol Sci ; 23(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36499644

RESUMO

Cells have the ability to communicate with their immediate and distant neighbors through the release of extracellular vesicles (EVs). EVs facilitate intercellular signaling through the packaging of specific cargo in all type of cells, and perturbations of EV biogenesis, sorting, release and uptake is the basis of a number of disorders. In this review, we summarize recent advances of the complex roles of the sphingolipid ceramide and lysosomes in the journey of EV biogenesis to uptake.


Assuntos
Ceramidas , Vesículas Extracelulares , Ceramidas/metabolismo , Transporte Proteico , Vesículas Extracelulares/metabolismo , Transporte Biológico , Lisossomos
4.
Int J Mol Sci ; 22(4)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673075

RESUMO

Proinflammatory cytokines are produced in pregnancy in response to the invading pathogens and/or nonmicrobial causes such as damage-associated molecules and embryonic semi-allogenic antigens. While inflammation is essential for a successful pregnancy, an excessive inflammatory response is implicated in several pathologies including pre-eclampsia (PE). This review focuses on the proinflammatory cytokine macrophage migration inhibitory factor (MIF), a critical regulator of the innate immune response and a major player of processes allowing normal placental development. PE is a severe pregnancy-related syndrome characterized by exaggerated inflammatory response and generalized endothelial damage. In some cases, usually of early onset, it originates from a maldevelopment of the placenta, and is associated with intrauterine growth restriction (IUGR) (placental PE). In other cases, usually of late onset, pre-pregnancy maternal diseases represent risk factors for the development of the disease (maternal PE). Available data suggest that low MIF production in early pregnancy could contribute to the abnormal placentation. The resulting placental hypoxia in later pregnancy could produce high release of MIF in maternal serum typical of placental PE. More studies are needed to understand the role of MIF, if any, in maternal PE.


Assuntos
Retardo do Crescimento Fetal/sangue , Oxirredutases Intramoleculares/sangue , Fatores Inibidores da Migração de Macrófagos/sangue , Placenta/metabolismo , Pré-Eclâmpsia/sangue , Feminino , Retardo do Crescimento Fetal/patologia , Humanos , Placenta/patologia , Pré-Eclâmpsia/patologia , Gravidez
5.
Int J Mol Sci ; 22(12)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205666

RESUMO

Bisphenol A (BPA) is a synthetic phenol extensively used in the manufacture of polycarbonate plastics and epoxy resins and a component of liquid and food storages. Among health disorders potentially attributed to BPA, the effects on metabolism have been especially studied. BPA represents a hazard in prenatal life because of its presence in tissues and fluids during pregnancy. Our recent study in rats fed with BPA showed a placental increase in glucose type 1 transporter (GLUT-1), suggesting a higher uptake of glucose. However, the role of BPA on GLUT transporters in pregnant women with metabolic dysfunction has not yet been investigated. In this study, placental tissue from 26 overweight (OW) women and 32 age-matched normal weight (NW) pregnant women were examined for expression of GLUT1 and GLUT4. Placental explants from OW and NW mothers were exposed to BPA 1 nM and 1 µM and tested for GLUTs expression. The data showed a different response of placental explants to BPA in GLUT1 expression with an increase in NW mothers and a decrease in OW ones. GLUT4 expression was lower in the explants from OW than NW mothers, while no difference was showed between OW and NW in placental biopsies for any of the transporters.


Assuntos
Compostos Benzidrílicos/toxicidade , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Sobrepeso/complicações , Fenóis/toxicidade , Placenta/efeitos dos fármacos , Complicações na Gravidez/induzido quimicamente , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Sobrepeso/metabolismo , Placenta/metabolismo , Gravidez , Complicações na Gravidez/metabolismo
6.
Am J Respir Crit Care Med ; 199(6): 760-772, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30326731

RESUMO

RATIONALE: Premature infants subjected to mechanical ventilation (MV) are prone to lung injury that may result in bronchopulmonary dysplasia. MV causes epithelial cell death and halts alveolar development. The exact mechanism of MV-induced epithelial cell death is unknown. OBJECTIVES: To determine the contribution of autophagy to MV-induced epithelial cell death in newborn rat lungs. METHODS: Newborn rat lungs and fetal rat lung epithelial (FRLE) cells were exposed to MV and cyclic stretch, respectively, and were then analyzed by immunoblotting and mass spectrometry for autophagy, apoptosis, and bioactive sphingolipids. MEASUREMENTS AND MAIN RESULTS: Both MV and stretch first induce autophagy (ATG 5-12 [autophagy related 5-12] and LC3B-II [microtubule-associated proteins 1A/1B light chain 3B-II] formation) followed by extrinsic apoptosis (cleaved CASP8/3 [caspase-8/3] and PARP [poly(ADP-ribose) polymerase] formation). Stretch-induced apoptosis was attenuated by inhibiting autophagy. Coimmunoprecipitation revealed that stretch promoted an interaction between LC3B and the FAS (first apoptosis signal) cell death receptor in FRLE cells. Ceramide levels, in particular C16 ceramide, were rapidly elevated in response to ventilation and stretch, and C16 ceramide treatment of FRLE cells induced autophagy and apoptosis in a temporal pattern similar to that seen with MV and stretch. SMPD1 (sphingomyelin phosphodiesterase 1) was activated by ventilation and stretch, and its inhibition prevented ceramide production, LC3B-II formation, LC3B/first apoptosis signal interaction, caspase-3 activation, and, ultimately, FLRE cell death. SMPD1 inhibition also attenuated ventilation-induced autophagy and apoptosis in newborn rats. CONCLUSIONS: Ventilation-induced ceramides promote autophagy-mediated cell death, and identifies SMPD1 as a potential therapeutic target for the treatment of ventilation-induced lung injury in newborns.


Assuntos
Morte Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Recém-Nascido/fisiologia , Pulmão/metabolismo , Respiração Artificial , Esfingomielina Fosfodiesterase/metabolismo , Animais , Animais Recém-Nascidos , Humanos , Modelos Animais , Ratos
7.
Biochim Biophys Acta Gen Subj ; 1861(4): 860-870, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28095317

RESUMO

BACKGROUND: Liposomes, used to improve the therapeutic index of new and established drugs, have advanced with the insertion of active targeting. The lectin from Lotus tetragonolobus (LTL), which binds glycans containing alpha-1,2-linked fucose, reveals surface regionalized glycoepitopes in highly proliferative cells not detectable in normally growing cells. In contrast, other lectins localize the corresponding glycoepitopes all over the cell surface. LTL also proved able to penetrate the cells by an unconventional uptake mechanism. METHODS: We used confocal laser microscopy to detect and localize LTL-positive glycoepitopes and lectin uptake in two cancer cell lines. We then constructed doxorubicin-loaded liposomes functionalized with LTL. Intracellular delivery of the drug was determined in vitro and in vivo by confocal and electron microscopy. RESULTS: We confirmed the specific localization of Lotus binding sites and the lectin uptake mechanism in the two cell lines and determined that LTL-functionalized liposomes loaded with doxorubicin greatly increased intracellular delivery of the drug, compared to unmodified doxorubicin-loaded liposomes. The LTL-Dox-L mechanism of entry and drug delivery was different to that of Dox-L and other liposomal preparations. LTL-Dox-L entered the cells one by one in tiny tubules that never fused with lysosomes. LTL-Dox-L injected in mice with melanoma specifically delivered loaded Dox to the cytoplasm of tumor cells. CONCLUSIONS: Liposome functionalization with LTL promises to broaden the therapeutic potential of liposomal doxorubicin treatment, decreasing non-specific toxicity. GENERAL SIGNIFICANCE: Doxorubicin-LTL functionalized liposomes promise to be useful in the development of new cancer chemotherapy protocols.


Assuntos
Proliferação de Células/efeitos dos fármacos , Fabaceae/metabolismo , Lectinas/administração & dosagem , Lectinas/química , Lipossomos/administração & dosagem , Lipossomos/química , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Química Farmacêutica/métodos , Citoplasma/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Sistemas de Liberação de Medicamentos/métodos , Epitopos/administração & dosagem , Epitopos/química , Humanos , Lisossomos/efeitos dos fármacos , Melanoma Experimental/tratamento farmacológico , Camundongos
8.
Apoptosis ; 20(5): 740-57, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25753687

RESUMO

Sphingolipids are a diverse class of signaling molecules implicated in many important aspects of cellular biology, including growth, differentiation, apoptosis, and autophagy. Autophagy and apoptosis are fundamental physiological processes essential for the maintenance of cellular and tissue homeostasis. There is great interest into the investigation of sphingolipids and their roles in regulating these key physiological processes as well as the manifestation of several disease states. With what is known to date, the entire scope of sphingolipid signaling is too broad, and a single review would hardly scratch the surface. Therefore, this review attempts to highlight the significance of sphingolipids in determining cell fate (e.g. apoptosis, autophagy, cell survival) in the context of the healthy lung, as well as various respiratory diseases including acute lung injury, acute respiratory distress syndrome, bronchopulmonary dysplasia, asthma, chronic obstructive pulmonary disease, emphysema, and cystic fibrosis. We present an overview of the latest findings related to sphingolipids and their metabolites, provide a short introduction to autophagy and apoptosis, and then briefly highlight the regulatory roles of sphingolipid metabolites in switching between cell survival and cell death. Finally, we describe functions of sphingolipids in autophagy and apoptosis in lung homeostasis, especially in the context of the aforementioned diseases.


Assuntos
Pneumopatias/metabolismo , Pulmão/patologia , Esfingolipídeos/fisiologia , Animais , Apoptose , Autofagia , Sobrevivência Celular , Homeostase , Humanos , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Pneumopatias/patologia , Transdução de Sinais
9.
Anal Chem ; 87(24): 12071-9, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26561279

RESUMO

A picosecond infrared laser (PIRL) is capable of cutting through biological tissues in the absence of significant thermal damage. As such, PIRL is a standalone surgical scalpel with the added bonus of minimal postoperative scar tissue formation. In this work, a tandem of PIRL ablation with electrospray ionization (PIR-LAESI) mass spectrometry is demonstrated and characterized for tissue molecular imaging, with a limit of detection in the range of 100 nM for reserpine or better than 5 nM for verapamil in aqueous solution. We characterized PIRL crater size using agar films containing Rhodamine. PIR-LAESI offers a 20-30 µm vertical resolution (∼3 µm removal per pulse) and a lateral resolution of ∼100 µm. We were able to detect 25 fmol of Rhodamine in agar ablation experiments. PIR-LAESI was used to map the distribution of endogenous methoxykaempferol glucoronide in zebra plant (Aphelandra squarrosa) leaves producing a localization map that is corroborated by the literature. PIR-LAESI was further used to image the distribution inside mouse kidneys of gadoteridol, an exogenous magnetic resonance contrast agent intravenously injected. Parallel mass spectrometry imaging (MSI) using desorption electrospray ionization (DESI) and matrix assisted laser desorption ionization (MALDI) were performed to corroborate PIR-LAESI images of the exogenous agent. We further show that PIR-LAESI is capable of desorption ionization of proteins as well as phospholipids. This comparative study illustrates that PIR-LAESI is an ion source for ambient mass spectrometry applications. As such, a future PIRL scalpel combined with secondary ionization such as ESI and mass spectrometry has the potential to provide molecular feedback to guide PIRL surgery.


Assuntos
Lasers , Espectrometria de Massas por Ionização por Electrospray , Animais , Raios Infravermelhos , Rim/citologia , Rim/cirurgia , Limite de Detecção , Camundongos , Camundongos SCID
10.
J Extracell Vesicles ; 13(2): e12413, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38353485

RESUMO

Small-for-gestational age (SGA) neonates exhibit increased perinatal morbidity and mortality, and a greater risk of developing chronic diseases in adulthood. Currently, no effective maternal blood-based screening methods for determining SGA risk are available. We used a high-resolution MS/MSALL shotgun lipidomic approach to explore the lipid profiles of small extracellular vesicles (sEV) released from the placenta into the circulation of pregnant individuals. Samples were acquired from 195 normal and 41 SGA pregnancies. Lipid profiles were determined serially across pregnancy. We identified specific lipid signatures of placental sEVs that define the trajectory of a normal pregnancy and their changes occurring in relation to maternal characteristics (parity and ethnicity) and birthweight centile. We constructed a multivariate model demonstrating that specific lipid features of circulating placental sEVs, particularly during early gestation, are highly predictive of SGA infants. Lipidomic-based biomarker development promises to improve the early detection of pregnancies at risk of developing SGA, an unmet clinical need in obstetrics.


Assuntos
Vesículas Extracelulares , Retardo do Crescimento Fetal , Recém-Nascido , Gravidez , Feminino , Humanos , Retardo do Crescimento Fetal/diagnóstico , Placenta , Espectrometria de Massas em Tandem , Lipídeos
11.
Am J Physiol Cell Physiol ; 305(9): C931-40, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23948708

RESUMO

It is becoming increasingly apparent that the dynamics of glycans reflect the physiological state of cells involved in several cell functions including growth, response to signal molecules, migration, as well as adhesion to, interaction with, and recognition of other cells. The presence of glycoconjugates in human placenta suggests their major role in maternal-fetal exchanges, intercellular adhesion, cellular metabolism, and villous vessel branching. Although several studies have described glycoconjugate distribution in the human placenta descriptions of their physiological function and control mechanisms during placental development are lacking. In this study we investigated the developmental distribution and regulation of placental core 1 O- and N-glycans focusing on early and late first trimester human pregnancy. To define the control mechanisms of the oligosaccharide chains during early placentation process, chorionic villous explants and human trophoblast cell lines were exposed to various oxygen levels. We found that oxygen tension regulates changes in core-1 O-glycan (the disaccharide Galß1-3GalNAc) epitope expression levels. Moreover, by double affinity chromatography and subsequent analysis with mass spectrometry, we identified in the heat shock protein 90-α (HSP90α) a good candidate as carrier of the Galß1-3GalNAc epitope at low oxygen tension. Our results support a fundamental role of oxygen tension in modulating glycosylation of proteins during placental development.


Assuntos
Epitopos/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Oxigênio/fisiologia , Placenta/metabolismo , Sialiltransferases/metabolismo , Linhagem Celular Transformada , Feminino , Humanos , Técnicas de Cultura de Órgãos , Oxigênio/farmacologia , Placenta/efeitos dos fármacos , Gravidez , beta-Galactosídeo alfa-2,3-Sialiltransferase
12.
Hum Cell ; 36(3): 1190-1198, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36995581

RESUMO

Argininosuccinate synthase (ASS1) is involved in nitric oxide production, which has a key role in placental development improving pregnancy outcomes. Syncytiotrophoblast and extravillous trophoblast differentiations are milestones of placental development and their impairment can cause pathologies, such as preeclampsia (PE) and fetal growth restriction (FGR). Immunohistochemistry and Western blotting were used to localize and quantify ASS1 in first trimester (8.2 ± 1.8 weeks), third trimester (38.6 ± 1.1 weeks), and PE (36.3 ± 1.5 weeks) placentas. In addition, cell cultures were used to evaluate ASS1 expression under hypoxic conditions and the syncytialization process. Our data showed that ASS1 is localized in the villous cytotrophoblast of first trimester, third trimester, and PE placentas, while the villous cytotrophoblast adjacent to the extravillous trophoblast of cell columns as well as the extravillous trophoblast were negative for ASS1 in first trimester placentas. In addition, ASS1 was decreased in third trimester compared to the first trimester placentas (p = 0.003) and no differences were detected between third trimester and PE placentas. Moreover, ASS1 expression was decreased in hypoxic conditions and syncytialized cells compared to those not syncytialized. In conclusion, we suggest that the expression of ASS1 in villous cytotrophoblast is related to maintaining proliferative phenotype, while ASS1 absence may be involved in promoting the differentiation of villous cytotrophoblast in extravillous cytotrophoblast of cell columns in first trimester placentas.


Assuntos
Placentação , Pré-Eclâmpsia , Humanos , Gravidez , Feminino , Placentação/fisiologia , Placenta , Argininossuccinato Sintase/metabolismo , Regulação para Baixo , Trofoblastos/patologia , Pré-Eclâmpsia/patologia , Hipóxia/patologia
13.
Sci Rep ; 12(1): 2155, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35140261

RESUMO

The influence of large vessels on near infrared spectroscopy (NIRS) measurement is generally considered negligible. Aim of this study is to test the hypothesis that changes in the vessel size, by varying the amount of absorbed NIR light, could profoundly affect NIRS blood volume indexes. Changes in haemoglobin concentration (tHb) and in tissue haemoglobin index (THI) were monitored over the basilic vein (BV) and over the biceps muscle belly, in 11 subjects (7 M - 4 F; age 31 ± 8 year) with simultaneous ultrasound monitoring of BV size. The arm was subjected to venous occlusion, according to two pressure profiles: slow (from 0 to 60 mmHg in 135 s) and rapid (0 to 40 mmHg maintained for 30 s). Both tHb and THI detected a larger blood volume increase (1.7 to 4 fold; p < 0.01) and exhibited a faster increase and a greater convexity on the BV than on the muscle. In addition, NIRS signals from BV exhibited higher correlation with changes in BV size than from muscle (r = 0.91 vs 0.55, p < 0.001 for THI). A collection of individual relevant recordings is also included. These results challenge the long-standing belief that the NIRS measurement is unaffected by large vessels and support the concept that large veins may be a major determinant of blood volume changes in multiple experimental conditions.


Assuntos
Volume Sanguíneo , Músculo Esquelético/irrigação sanguínea , Espectroscopia de Luz Próxima ao Infravermelho , Veias/anatomia & histologia , Adulto , Hemoglobinas/análise , Humanos , Masculino , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/química , Ultrassonografia , Veias/diagnóstico por imagem
14.
Cells ; 11(20)2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36291063

RESUMO

Dietary exposure to Bisphenol A (BPA), an industrial chemical present in food containers, affects nutrient metabolism in the myocardium of offspring during intrauterine life. Using a murine model, we observed that fetal hearts from mothers exposed to BPA (2.5 µg/kg/day) for 20 days before mating and for all of the gestation had decreased expression of glucose transporter-1 (GLUT1), the principal sugar transporter in the fetal heart, and increased expression of fatty acid cluster of differentiation 36 transporter (CD36), compared to control fetuses from vehicle-treated mothers. We confirmed the suppression of GLUT1 by exposing fetal heart organotypic cultures to BPA (1 nM) for 48 h but did not detect changes in CD36 compared to controls. During pregnancy, the placenta continuously releases extracellular vesicles such as exosomes into fetal circulation. These vesicles influence the growth and development of fetal organs. When fetal heart cultures were treated with cord blood-derived exosomes isolated from BPA-fed animals, GLUT1 expression was increased by approximately 40%. Based on our results, we speculate that exosomes from cord blood, in particular placenta-derived nanovesicles, could contribute to the stabilization of the fetal heart metabolism by ameliorating the harmful effects of BPA on GLUT1 expression.


Assuntos
Compostos Benzidrílicos , Exossomos , Sangue Fetal , Transportador de Glucose Tipo 1 , Miocárdio , Fenóis , Animais , Feminino , Gravidez , Ratos , Exossomos/efeitos dos fármacos , Exossomos/metabolismo , Ácidos Graxos/metabolismo , Sangue Fetal/efeitos dos fármacos , Sangue Fetal/metabolismo , Feto/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Miocárdio/metabolismo , Compostos Benzidrílicos/efeitos adversos , Fenóis/efeitos adversos , Dieta
15.
Cells ; 11(8)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35456036

RESUMO

Women with multiple sclerosis (MS) can safely become pregnant and give birth, with no side effects or impediments. Pregnancy is generally accepted as a period of well-being in which relapses have a softer evolution, particularly in the third trimester. Herein, we hypothesized that the placenta, via its "secretome", could contribute to the recognized beneficial effects of pregnancy on MS activity. We focused on a well-known receptor/ligand/decoy receptor system, such as the one composed by the receptor activator of nuclear factor-kB (RANK), its ligand (RANKL), and the decoy receptor osteoprotegerin (OPG), which have never been investigated in an integrated way in MS, pregnancy, and placenta. We reported that pregnancy at the term of gestation influences the balance between circulating RANKL and its endogenous inhibitor OPG in MS women. We demonstrated that the placenta at term is an invaluable source of homodimeric OPG. By functional studies on astrocytes, we showed that placental OPG suppresses the mRNA expression of the CCL20, a chemokine responsible for Th17 cell recruitment. We propose placental OPG as a crucial molecule for the recognized beneficial effect of late pregnancy on MS and its potential utility for the development of new and more effective therapeutic approaches.


Assuntos
Esclerose Múltipla , Feminino , Humanos , Ligantes , Esclerose Múltipla/metabolismo , Osteoprotegerina/metabolismo , Placenta/metabolismo , Gravidez , Ligação Proteica , Ligante RANK/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo
16.
Front Cell Dev Biol ; 9: 652607, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055782

RESUMO

The mechanisms contributing to excessive fibronectin in preeclampsia, a pregnancy-related disorder, remain unknown. Herein, we investigated the role of JMJD6, an O2- and Fe2+-dependent enzyme, in mediating placental fibronectin processing and function. MALDI-TOF identified fibronectin as a novel target of JMJD6-mediated lysyl hydroxylation, preceding fibronectin glycosylation, deposition, and degradation. In preeclamptic placentae, fibronectin accumulated primarily in lysosomes of the mesenchyme. Using primary placental mesenchymal cells (pMSCs), we found that fibronectin fibril formation and turnover were markedly impeded in preeclamptic pMSCs, partly due to impaired lysosomal degradation. JMJD6 knockdown in control pMSCs recapitulated the preeclamptic FN phenotype. Importantly, preeclamptic pMSCs had less total and labile Fe2+ and Hinokitiol treatment rescued fibronectin assembly and promoted lysosomal degradation. Time-lapse imaging demonstrated that defective ECM deposition by preeclamptic pMSCs impeded HTR-8/SVneo cell migration, which was rescued upon Hinokitiol exposure. Our findings reveal new Fe2+-dependent mechanisms controlling fibronectin homeostasis/function in the placenta that go awry in preeclampsia.

17.
Front Cell Dev Biol ; 9: 652651, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34017832

RESUMO

Aberrant ceramide build-up in preeclampsia, a serious disorder of pregnancy, causes exuberant autophagy-mediated trophoblast cell death. The significance of ceramide accumulation for lysosomal biogenesis in preeclampsia is unknown. Here we report that lysosome formation is markedly increased in trophoblast cells of early-onset preeclamptic placentae, in particular in syncytiotrophoblasts. This is accompanied by augmented levels of transcription factor EB (TFEB). In vitro and in vivo experiments demonstrate that ceramide increases TFEB expression and nuclear translocation and induces lysosomal formation and exocytosis. Further, we show that TFEB directly regulates the expression of lysosomal sphingomyelin phosphodiesterase (L-SMPD1) that degrades sphingomyelin to ceramide. In early-onset preeclampsia, ceramide-induced lysosomal exocytosis carries L-SMPD1 to the apical membrane of the syncytial epithelium, resulting in ceramide accumulation in lipid rafts and release of active L-SMPD1 via ceramide-enriched exosomes into the maternal circulation. The SMPD1-containing exosomes promote endothelial activation and impair endothelial tubule formation in vitro. Both exosome-induced processes are attenuated by SMPD1 inhibitors. These findings suggest that ceramide-induced lysosomal biogenesis and exocytosis in preeclamptic placentae contributes to maternal endothelial dysfunction, characteristic of this pathology.

18.
Front Cardiovasc Med ; 8: 775635, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35127855

RESUMO

Assessment of vascular size and of its phasic changes by ultrasound is important for the management of many clinical conditions. For example, a dilated and stiff inferior vena cava reflects increased intravascular volume and identifies patients with heart failure at greater risk of an early death. However, lack of standardization and sub-optimal intra- and inter- operator reproducibility limit the use of these techniques. To overcome these limitations, we developed two image-processing algorithms that quantify phasic vascular deformation by tracking wall movements, either in long or in short axis. Prospective studies will verify the clinical applicability and utility of these methods in different settings, vessels and medical conditions.

19.
J Cell Biochem ; 111(1): 229-38, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20506485

RESUMO

In a previous article, we demonstrated the existence of fucosyl-containing O-glycans forms of nucleolin in bovine post-capillary venular endothelial cells (CVEC) and malignant cultured human A431 cells. The tool for this discovery was an antibody found to interact strongly and exclusively with nucleolin in total protein extracts. The antibody was originally raised against a mollusc glycoprotein and was demonstrated to be directed against its O-glycans, recently found to belong prevalently to the blood group H-antigen type with fucose linked in alpha1, 2 to galactose. Here, we show that si-RNA induced down-regulation of the expression of FUT1 and FUT2, the fucosyltransferases required for the biosynthesis of the terminal glycan motif Fucalpha-2-Galbeta-R, reduced expression of the fucosylated nucleolin glycoforms and their exposure at the cell surface in CVEC. Treatment of the cells with FUT1/2 siRNA also reduced their ability to bind and internalize endostatin and their adhesion efficiency and inhibited cell growth. Expression of FUT1, FUT2, and FUT6 was also analyzed in serum-stimulated versus serum-starved cells and in cells treated with FUT1 and FUT2 siRNA. A reduced expression of fucosylated nucleolin and inhibition of cell growth by suppressing FUT1/2 expression was also tested and shown to be exhibited in human A431 cells.


Assuntos
Adesão Celular/fisiologia , Proliferação de Células , Fucose/metabolismo , Fucosiltransferases/metabolismo , Inativação Gênica , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Animais , Bovinos , Linhagem Celular , Fucosiltransferases/genética , Regulação da Expressão Gênica , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Fosfoproteínas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Galactosídeo 2-alfa-L-Fucosiltransferase , Nucleolina
20.
Ultrasound Med Biol ; 46(3): 849-854, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31810802

RESUMO

Central venous pressure and volume status are relevant parameters for characterization of a patient's hemodynamic condition; however, their invasive assessment is affected by various risks while non-invasive approaches provide limited and subjective indications. Here we explore the possibility of assessing venous pulse wave velocity (vPWV), a potential indicator of venous pressure changes. In eight healthy patients, pressure pulses were generated artificially in the leg veins by rapid compression of the foot, and their propagation was detected at the level of the superficial femoral vein with Doppler ultrasound. Changes in leg venous pressure were obtained by raising the trunk from the initial supine position by 30° and 60°. vPWV increased from 1.78 ± 0.06 m/s (supine) to 2.26 ± 0.19 m/s (60°) (p < 0.01) and exhibited an overall linear relationship with venous pressure. These results indicate that vPWV can be easily assessed, and is a non-invasive indicator of venous pressure changes.


Assuntos
Análise de Onda de Pulso , Veias/diagnóstico por imagem , Veias/fisiologia , Adulto , Humanos , Perna (Membro)/irrigação sanguínea , Valores de Referência , Ultrassonografia Doppler , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA