Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Brief Bioinform ; 9(3): 220-31, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18238804

RESUMO

The BioMoby project was initiated in 2001 from within the model organism database community. It aimed to standardize methodologies to facilitate information exchange and access to analytical resources, using a consensus driven approach. Six years later, the BioMoby development community is pleased to announce the release of the 1.0 version of the interoperability framework, registry Application Programming Interface and supporting Perl and Java code-bases. Together, these provide interoperable access to over 1400 bioinformatics resources worldwide through the BioMoby platform, and this number continues to grow. Here we highlight and discuss the features of BioMoby that make it distinct from other Semantic Web Service and interoperability initiatives, and that have been instrumental to its deployment and use by a wide community of bioinformatics service providers. The standard, client software, and supporting code libraries are all freely available at http://www.biomoby.org/.


Assuntos
Biologia Computacional/métodos , Sistemas de Gerenciamento de Base de Dados , Bases de Dados Factuais , Armazenamento e Recuperação da Informação/métodos , Internet , Linguagens de Programação , Integração de Sistemas
2.
Methods Mol Biol ; 2086: 27-60, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31707666

RESUMO

In clinical gene transfer applications, lentiviral vectors (LV) have rapidly become the primary means to achieve permanent and stable expression of a gene of interest or alteration of gene expression in target cells. This status can be attributed primarily to the ability of the LV to (1) transduce dividing as well as quiescent cells, (2) restrict or expand tropism through envelope pseudo-typing, and (3) regulate gene expression within different cell lineages through internal promoter selection. Recent progress in viral vector design such as the elimination of unnecessary viral elements, split packaging, and self-inactivating vectors has established a significant safety profile for these vectors. The level of GMP compliance required for the manufacture of LV is dependent upon their intended use, stage of drug product development, and country where the vector will be used as the different regulatory authorities who oversee the clinical usage of such products may have different requirements. As such, successful GMP manufacture of LV requires a combination of diverse factors including: regulatory expertise, compliant facilities, validated and calibrated equipments, starting materials of the highest quality, trained production personnel, scientifically robust production processes, and a quality by design approach. More importantly, oversight throughout manufacturing by an independent Quality Assurance Unit who has the authority to reject or approve the materials is required. We describe here the GMP manufacture of LV at our facility using a four plasmid system where 293T cells from an approved Master Cell Bank (MCB) are transiently transfected using polyethylenimine (PEI). Following transfection, the media is changed and Benzonase added to digest residual plasmid DNA. Two harvests of crude supernatant are collected and then clarified by filtration. The clarified supernatant is purified and concentrated by anion exchange chromatography and tangential flow filtration. The final product is then diafiltered directly into the sponsor defined final formulation buffer and aseptically filled.


Assuntos
Centros Médicos Acadêmicos , Terapia Genética , Vetores Genéticos/biossíntese , Vetores Genéticos/normas , Lentivirus , Técnicas de Cultura de Células , Meios de Cultura , Arquitetura de Instituições de Saúde , Terapia Genética/normas , Vetores Genéticos/genética , Células HEK293 , Humanos , Lentivirus/genética , Transfecção
3.
BMC Bioinformatics ; 8: 320, 2007 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-17760972

RESUMO

BACKGROUND: Apollo, a genome annotation viewer and editor, has become a widely used genome annotation and visualization tool for distributed genome annotation projects. When using Apollo for annotation, database updates are carried out by uploading intermediate annotation files into the respective database. This non-direct database upload is laborious and evokes problems of data synchronicity. RESULTS: To overcome these limitations we extended the Apollo data adapter with a generic, configurable web service client that is able to retrieve annotation data in a GAME-XML-formatted string and pass it on to Apollo's internal input routine. CONCLUSION: This Apollo web service adapter, Apollo2Go, simplifies the data exchange in distributed projects and aims to render the annotation process more comfortable. The Apollo2Go software is freely available from ftp://ftpmips.gsf.de/plants/apollo_webservice.


Assuntos
Mapeamento Cromossômico/métodos , Bases de Dados Genéticas , Documentação/métodos , Armazenamento e Recuperação da Informação/métodos , Internet , Software , Interface Usuário-Computador , Sistemas de Gerenciamento de Base de Dados
4.
Methods Mol Biol ; 406: 137-59, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18287691

RESUMO

The Munich Institute for Protein Sequences (MIPS) has been involved in maintaining plant genome databases since the Arabidopsis thaliana genome project. Genome databases and analysis resources have focused on individual genomes and aim to provide flexible and maintainable data sets for model plant genomes as a backbone against which experimental data, for example from high-throughput functional genomics, can be organized and evaluated. In addition, model genomes also form a scaffold for comparative genomics, and much can be learned from genome-wide evolutionary studies.


Assuntos
Biologia Computacional/métodos , Genoma de Planta/genética , Armazenamento e Recuperação da Informação/métodos , Arabidopsis/genética , Genômica/métodos , Lotus/genética , Solanum lycopersicum/genética , Medicago/genética , Zea mays/genética
5.
Nucleic Acids Res ; 32(Database issue): D373-6, 2004 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-14681437

RESUMO

Arabidopsis thaliana is the most widely studied model plant. Functional genomics is intensively underway in many laboratories worldwide. Beyond the basic annotation of the primary sequence data, the annotated genetic elements of Arabidopsis must be linked to diverse biological data and higher order information such as metabolic or regulatory pathways. The MIPS Arabidopsis thaliana database MAtDB aims to provide a comprehensive resource for Arabidopsis as a genome model that serves as a primary reference for research in plants and is suitable for transfer of knowledge to other plants, especially crops. The genome sequence as a common backbone serves as a scaffold for the integration of data, while, in a complementary effort, these data are enhanced through the application of state-of-the-art bioinformatics tools. This information is visualized on a genome-wide and a gene-by-gene basis with access both for web users and applications. This report updates the information given in a previous report and provides an outlook on further developments. The MAtDB web interface can be accessed at http://mips.gsf.de/proj/thal/db.


Assuntos
Arabidopsis/genética , Bases de Dados Genéticas , Genoma de Planta , Genômica , Proteínas de Arabidopsis/genética , Biologia Computacional , Genes de Plantas , Armazenamento e Recuperação da Informação , Internet , Interface Usuário-Computador
6.
Mol Ther Methods Clin Dev ; 3: 16004, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27722179

RESUMO

Compared to other integrating viral vectors, foamy virus (FV) vectors have distinct advantages as a gene transfer tool, including their nonpathogenicity, the ability to carry larger transgene cassettes, and increased stability of virus particles due to DNA genome formation within the virions. Proof of principle of its therapeutic utility was provided with the correction of canine leukocyte adhesion deficiency using autologous CD34+ cells transduced with FV vector carrying the canine CD18 gene, demonstrating its long-term safety and efficacy. However, infectious titers of FV-human(h)CD18 were low and not suitable for manufacturing of clinical-grade product. Herein, we developed a scalable production and purification process that resulted in 60-fold higher FV-hCD18 titers from ~1.7 × 104 to 1.0 × 106 infectious units (IU)/ml. Process development improvements included use of polyethylenimine-based transfection, use of a codon-optimized gag, heparin affinity chromatography, tangential flow filtration, and ultracentrifugation, which reproducibly resulted in 5,000-fold concentrated and purified virus, an overall yield of 19 ± 3%, and final titers of 1-2 × 109 IU/ml. Highly concentrated vector allowed reduction of final dimethyl sulfoxide (DMSO) concentration, thereby avoiding DMSO-induced toxicity to CD34+ cells while maintaining high transduction efficiencies. This process development results in clinically relevant, high titer FV which can be scaled up for clinical grade production.

7.
Plant Physiol ; 138(1): 5-17, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15888673

RESUMO

The burden of non-interoperability between on-line genomic resources is increasingly the rate-limiting step in large-scale genomic analysis. BioMOBY is a biological Web Service interoperability initiative that began as a retreat of representatives from the model organism database community in September, 2001. Its long-term goal is to provide a simple, extensible platform through which the myriad of on-line biological databases and analytical tools can offer their information and analytical services in a fully automated and interoperable way. Of the two branches of the larger BioMOBY project, the Web Services branch (MOBY-S) has now been deployed over several dozen data sources worldwide, revealing some significant observations about the nature of the integrative biology problem; in particular, that Web Service interoperability in the domain of bioinformatics is, unexpectedly, largely a syntactic rather than a semantic problem. That is to say, interoperability between bioinformatics Web Services can be largely achieved simply by specifying the data structures being passed between the services (syntax) even without rich specification of what those data structures mean (semantics). Thus, one barrier of the integrative problem has been overcome with a surprisingly simple solution. Here, we present a non-technical overview of the critical components that give rise to the interoperable behaviors seen in MOBY-S and discuss an exemplar case, the PlaNet consortium, where MOBY-S has been deployed to integrate the on-line plant genome databases and analytical services provided by a European consortium of databases and data service providers.


Assuntos
Biologia Computacional , Bases de Dados Genéticas , Internet , Plantas/genética , Redes de Comunicação de Computadores , Armazenamento e Recuperação da Informação , Software
8.
Plant Physiol ; 138(3): 1301-9, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16010004

RESUMO

With several plant genomes sequenced, the power of comparative genome analysis can now be applied. However, genome-scale cross-species analyses are limited by the effort for data integration. To develop an integrated cross-species plant genome resource, we maintain comprehensive databases for model plant genomes, including Arabidopsis (Arabidopsis thaliana), maize (Zea mays), Medicago truncatula, and rice (Oryza sativa). Integration of data and resources is emphasized, both in house as well as with external partners and databases. Manual curation and state-of-the-art bioinformatic analysis are combined to achieve quality data. Easy access to the data is provided through Web interfaces and visualization tools, bulk downloads, and Web services for application-level access. This allows a consistent view of the model plant genomes for comparative and evolutionary studies, the transfer of knowledge between species, and the integration with functional genomics data.


Assuntos
Bases de Dados Genéticas , Bases de Dados de Proteínas , Genoma de Planta , Proteínas de Plantas/genética , Biologia Computacional , Sistemas de Gerenciamento de Base de Dados , Alemanha , Centros de Informação , Armazenamento e Recuperação da Informação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA