Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 16813, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039124

RESUMO

The demand for modern electronics and semiconductors has increased throughout the years, which has enabled the innovation and exploration of solution-processed deposition. Solution-based processes have gained a lot of interest due to the low-cost fabrication and the large fabrication areas without the need for high-vacuum equipment. In this study, we utilized the ZnO ink for inkjet printer ink to fabricate a thin film via Electrohydrodynamic printing. Three different ink solutions were prepared for experimentation. The EHD printing technique demonstrated the ink's compatibility with and without the modifications. The outcomes of the EHD printed materials were comparable with the spin-coated thin films. The EHD-printed films demonstrated better results in comparison to spin-coated films. Ra and Rq of the EHD film measured at 3.651 nm and 4.973 nm, respectively. It improved the absorbance up to two-fold at 360 nm wavelength and electrical conductivity up to 40% compared to the spin-coated films. Furthermore, the optimization of the printing parameters can lead to the improved morphology and thickness of the EHD thin films.

2.
Sci Rep ; 13(1): 16319, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770516

RESUMO

Additive manufacturing (AM) enables the production of high value and high performance components with applications from aerospace to biomedical fields. We report here on the fabrication of poly(3-hexylthiophene): phenyl-C61-butyric acid methyl ester (P3HT:PCBM) thin films through the electrohydrodynamic atomization (EHDA) process and its integration as absorber layer for organic solar cells. Prior to the film fabrication, the optimization of the process was carried out by developing the operating envelope for the P3HT:PCBM ink to determine the optimal flow rate and the appropriate applied voltage to achieve a stable-cone deposition mode. The EHDA printed thin-film's topography, morphology and optical properties were systematically analyzed. The root-mean-square roughness was found to vary significantly with the annealing temperature and the flow rate and ranged from 1.938 to 3.345 nm. The estimated film mass and thickness were found between 3.235 and 23.471 mg and 597.5 nm to 1.60 µm, respectively. The films exhibited a broad visible absorption spectrum ranging from ~ 340 to ~ 600 nm, with a maximum peak λmax located at ~ 500 nm. As the annealing temperature and the flow rate were increased, discernible alterations in the PCBM clusters were consequently observed in the blends of the film and the size of the PCBM clusters has decreased by 3% while the distance between them was highly reduced by as much as 82%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA