Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Biol Evol ; 41(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38982580

RESUMO

South American coca (Erythroxylum coca and E. novogranatense) has been a keystone crop for many Andean and Amazonian communities for at least 8,000 years. However, over the last half-century, global demand for its alkaloid cocaine has driven intensive agriculture of this plant and placed it in the center of armed conflict and deforestation. To monitor the changing landscape of coca plantations, the United Nations Office on Drugs and Crime collects annual data on their areas of cultivation. However, attempts to delineate areas in which different varieties are grown have failed due to limitations around identification. In the absence of flowers, identification relies on leaf morphology, yet the extent to which this is reflected in taxonomy is uncertain. Here, we analyze the consistency of the current naming system of coca and its four closest wild relatives (the "coca clade"), using morphometrics, phylogenomics, molecular clocks, and population genomics. We include name-bearing type specimens of coca's closest wild relatives E. gracilipes and E. cataractarum. Morphometrics of 342 digitized herbarium specimens show that leaf shape and size fail to reliably discriminate between species and varieties. However, the statistical analyses illuminate that rounder and more obovate leaves of certain varieties could be associated with the subtle domestication syndrome of coca. Our phylogenomic data indicate extensive gene flow involving E. gracilipes which, combined with morphometrics, supports E. gracilipes being retained as a single species. Establishing a robust evolutionary-taxonomic framework for the coca clade will facilitate the development of cost-effective genotyping methods to support reliable identification.


Assuntos
Filogenia , Evolução Biológica , Coca/genética , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética
2.
New Phytol ; 242(2): 700-716, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382573

RESUMO

Orchids constitute one of the most spectacular radiations of flowering plants. However, their origin, spread across the globe, and hotspots of speciation remain uncertain due to the lack of an up-to-date phylogeographic analysis. We present a new Orchidaceae phylogeny based on combined high-throughput and Sanger sequencing data, covering all five subfamilies, 17/22 tribes, 40/49 subtribes, 285/736 genera, and c. 7% (1921) of the 29 524 accepted species, and use it to infer geographic range evolution, diversity, and speciation patterns by adding curated geographical distributions from the World Checklist of Vascular Plants. The orchids' most recent common ancestor is inferred to have lived in Late Cretaceous Laurasia. The modern range of Apostasioideae, which comprises two genera with 16 species from India to northern Australia, is interpreted as relictual, similar to that of numerous other groups that went extinct at higher latitudes following the global climate cooling during the Oligocene. Despite their ancient origin, modern orchid species diversity mainly originated over the last 5 Ma, with the highest speciation rates in Panama and Costa Rica. These results alter our understanding of the geographic origin of orchids, previously proposed as Australian, and pinpoint Central America as a region of recent, explosive speciation.


Assuntos
Clima , Orchidaceae , Austrália , Filogenia , Filogeografia , Orchidaceae/genética
3.
Syst Biol ; 72(4): 946-954, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-36964756

RESUMO

Cophylogeny represents a framework to understand how ecological and evolutionary process influence lineage diversification. The recently developed algorithm Random Tanglegram Partitions provides a directly interpretable statistic to quantify the strength of cophylogenetic signal and incorporates phylogenetic uncertainty into its estimation, and maps onto a tanglegram the contribution to cophylogenetic signal of individual host-symbiont associations. We introduce Rtapas, an R package to perform Random Tanglegram Partitions. Rtapas applies a given global-fit method to random partial tanglegrams of a fixed size to identify the associations, terminals, and internal nodes that maximize phylogenetic congruence. This new package extends the original implementation with a new algorithm that examines the contribution to phylogenetic incongruence of each host-symbiont association and adds ParaFit, a method designed to test for topological congruence between two phylogenies, to the list of global-fit methods than can be applied. Rtapas facilitates and speeds up cophylogenetic analysis, as it can handle large phylogenies (100+ terminals) in affordable computational time as illustrated with two real-world examples. Rtapas can particularly cater for the need for causal inference in cophylogeny in two domains: (i) Analysis of complex and intricate host-symbiont evolutionary histories and (ii) assessment of topological (in)congruence between phylogenies produced with different DNA markers and specifically identify subsets of loci for phylogenetic analysis that are most likely to reflect gene-tree evolutionary histories. [Cophylogeny; cophylogenetic signal; gene tree incongruence; phylogenetic congruence; phylogenomics.].


Assuntos
Evolução Biológica , Evolução Molecular , Filogenia
4.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34031154

RESUMO

Wild relatives or progenitors of crops are important resources for breeding and for understanding domestication. Identifying them, however, is difficult because of extinction, hybridization, and the challenge of distinguishing them from feral forms. Here, we use collection-based systematics, iconography, and resequenced accessions of Citrullus lanatus and other species of Citrullus to search for the potential progenitor of the domesticated watermelon. A Sudanese form with nonbitter whitish pulp, known as the Kordofan melon (C. lanatus subsp. cordophanus), appears to be the closest relative of domesticated watermelons and a possible progenitor, consistent with newly interpreted Egyptian tomb paintings that suggest that the watermelon may have been consumed in the Nile Valley as a dessert by 4360 BP. To gain insights into the genetic changes that occurred from the progenitor to the domesticated watermelon, we assembled and annotated the genome of a Kordofan melon at the chromosome level, using a combination of Pacific Biosciences and Illumina sequencing as well as Hi-C mapping technologies. The genetic signature of bitterness loss is present in the Kordofan melon genome, but the red fruit flesh color only became fixed in the domesticated watermelon. We detected 15,824 genome structural variants (SVs) between the Kordofan melon and a typical modern cultivar, "97103," and mapping the SVs in over 400 Citrullus accessions revealed shifts in allelic frequencies, suggesting that fruit sweetness has gradually increased over the course of watermelon domestication. That a likely progenitor of the watermelon still exists in Sudan has implications for targeted modern breeding efforts.


Assuntos
Cromossomos de Plantas/genética , Citrullus/genética , Domesticação , Genoma de Planta , Melhoramento Vegetal
5.
Mol Biol Evol ; 39(8)2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35907246

RESUMO

Iconographic evidence from Egypt suggests that watermelon pulp was consumed there as a dessert by 4,360 BP. Earlier archaeobotanical evidence comes from seeds from Neolithic settlements in Libya, but whether these were watermelons with sweet pulp or other forms is unknown. We generated genome sequences from 6,000- and 3,300-year-old seeds from Libya and Sudan, and from worldwide herbarium collections made between 1824 and 2019, and analyzed these data together with resequenced genomes from important germplasm collections for a total of 131 accessions. Phylogenomic and population-genomic analyses reveal that (1) much of the nuclear genome of both ancient seeds is traceable to West African seed-use "egusi-type" watermelon (Citrullus mucosospermus) rather than domesticated pulp-use watermelon (Citrullus lanatus ssp. vulgaris); (2) the 6,000-year-old watermelon likely had bitter pulp and greenish-white flesh as today found in C. mucosospermus, given alleles in the bitterness regulators ClBT and in the red color marker LYCB; and (3) both ancient genomes showed admixture from C. mucosospermus, C. lanatus ssp. cordophanus, C. lanatus ssp. vulgaris, and even South African Citrullus amarus, and evident introgression between the Libyan seed (UMB-6) and populations of C. lanatus. An unexpected new insight is that Citrullus appears to have initially been collected or cultivated for its seeds, not its flesh, consistent with seed damage patterns induced by human teeth in the oldest Libyan material.


Assuntos
Citrullus , Mapeamento Cromossômico , Citrullus/genética , Domesticação , Genômica , Sementes/genética
6.
Am J Bot ; 110(2): e16117, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36480380

RESUMO

PREMISE: Recent phylogenetic studies of the Araceae have confirmed the position of the duckweeds nested within the aroids, and the monophyly of a clade containing all the unisexual flowered aroids plus the bisexual-flowered Calla palustris. The main objective of the present study was to better resolve the deep phylogenetic relationships among the main lineages within the family, particularly the relationships between the eight currently recognized subfamilies. We also aimed to confirm the phylogenetic position of the enigmatic genus Calla in relation to the long-debated evolutionary transition between bisexual and unisexual flowers in the family. METHODS: Nuclear DNA sequence data were generated for 128 species across 111 genera (78%) of Araceae using target sequence capture and the Angiosperms 353 universal probe set. RESULTS: The phylogenomic data confirmed the monophyly of the eight Araceae subfamilies, but the phylogenetic position of subfamily Lasioideae remains uncertain. The genus Calla is included in subfamily Aroideae, which has also been expanded to include Zamioculcadoideae. The tribe Aglaonemateae is newly defined to include the genera Aglaonema and Boycea. CONCLUSIONS: Our results strongly suggest that new research on African genera (Callopsis, Nephthytis, and Anubias) and Calla will be important for understanding the early evolution of the Aroideae. Also of particular interest are the phylogenetic positions of the isolated genera Montrichardia, Zantedeschia, and Anchomanes, which remain only moderately supported here.


Assuntos
Araceae , Magnoliopsida , Filogenia , Araceae/genética , Magnoliopsida/genética , Análise de Sequência de DNA
7.
Mol Biol Evol ; 38(10): 4475-4492, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34191029

RESUMO

The date palm, Phoenix dactylifera, has been a cornerstone of Middle Eastern and North African agriculture for millennia. It was first domesticated in the Persian Gulf, and its evolution appears to have been influenced by gene flow from two wild relatives, P. theophrasti, currently restricted to Crete and Turkey, and P. sylvestris, widespread from Bangladesh to the West Himalayas. Genomes of ancient date palm seeds show that gene flow from P. theophrasti to P. dactylifera may have occurred by ∼2,200 years ago, but traces of P. sylvestris could not be detected. We here integrate archeogenomics of a ∼2,100-year-old P. dactylifera leaf from Saqqara (Egypt), molecular-clock dating, and coalescence approaches with population genomic tests, to probe the hybridization between the date palm and its two closest relatives and provide minimum and maximum timestamps for its reticulated evolution. The Saqqara date palm shares a close genetic affinity with North African date palm populations, and we find clear genomic admixture from both P. theophrasti, and P. sylvestris, indicating that both had contributed to the date palm genome by 2,100 years ago. Molecular-clocks placed the divergence of P. theophrasti from P. dactylifera/P. sylvestris and that of P. dactylifera from P. sylvestris in the Upper Miocene, but strongly supported, conflicting topologies point to older gene flow between P. theophrasti and P. dactylifera, and P. sylvestris and P. dactylifera. Our work highlights the ancient hybrid origin of the date palms, and prompts the investigation of the functional significance of genetic material introgressed from both close relatives, which in turn could prove useful for modern date palm breeding.


Assuntos
Phoeniceae , Domesticação , Egito , Phoeniceae/genética , Melhoramento Vegetal , Folhas de Planta/genética
8.
J Exp Bot ; 72(2): 654-681, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33449086

RESUMO

Plastid sequences have long dominated phylogeny reconstruction at all time depths, predicated on a usually untested assumption that they accurately represent the evolutionary histories of phenotypically circumscribed species. We combined detailed in situ morphometrics (124 plants) and whole-plastome sequencing through genome skimming (71 plants) in order to better understand species-level diversity and speciation in arguably the most challenging monophyletic group within the taxonomically controversial, pseudo-copulatory bee orchid genus Ophrys. Using trees and ordinations, we interpreted the data at four nested demographic levels-macrospecies, mesospecies, microspecies, and local population-seeking the optimal level for bona fide species. Neither morphological nor molecular discontinuities are evident at any level below macrospecies, the observed overlap among taxa suggesting that both mesospecies and microspecies reflect arbitrary division of a continuum of variation. Plastomes represent geographic location more strongly than taxonomic assignment and correlate poorly with morphology, suggesting widespread plastid capture and possibly post-glacial expansion from multiple southern refugia. As they are rarely directly involved in the speciation process, plastomes depend on extinction of intermediate lineages to provide phylogenetic signal and so cannot adequately document evolutionary radiations. The popular 'ethological' evolutionary model recognizes as numerous 'ecological species' (microspecies) lineages perceived as actively diverging as a result of density-dependent selection on very few features that immediately dictate extreme pollinator specificity. However, it is assumed rather than demonstrated that the many microspecies are genuinely diverging. We conversely envisage a complex four-dimensional reticulate network of lineages, generated locally and transiently through a wide spectrum of mechanisms, but each unlikely to maintain an independent evolutionary trajectory long enough to genuinely speciate by escaping ongoing gene flow. The frequent but localized microevolution that characterizes the Ophrys sphegodes complex is often convergent and rarely leads to macroevolution. Choosing between the contrasting 'discontinuity' and 'ethology' models will require next-generation sequencing of nuclear genomes plus ordination of corresponding morphometric matrices, seeking the crucial distinction between retained ancestral polymorphism-consistent with lineage divergence-and polymorphisms reflecting gene flow through 'hybridization'-more consistent with lineage convergence.


Assuntos
Orchidaceae , Animais , Abelhas/genética , Demografia , Fluxo Gênico , Orchidaceae/genética , Filogenia
9.
Syst Biol ; 69(6): 1212-1230, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32298451

RESUMO

Symbiosis is a key driver of evolutionary novelty and ecological diversity, but our understanding of how macroevolutionary processes originate extant symbiotic associations is still very incomplete. Cophylogenetic tools are used to assess the congruence between the phylogenies of two groups of organisms related by extant associations. If phylogenetic congruence is higher than expected by chance, we conclude that there is cophylogenetic signal in the system under study. However, how to quantify cophylogenetic signal is still an open issue. We present a novel approach, Random Tanglegram Partitions (Random TaPas) that applies a given global-fit method to random partial tanglegrams of a fixed size to identify the associations, terminals, and nodes that maximize phylogenetic congruence. By means of simulations, we show that the output value produced is inversely proportional to the number and proportion of cospeciation events employed to build simulated tanglegrams. In addition, with time-calibrated trees, Random TaPas can also distinguish cospeciation from pseudocospeciation. Random TaPas can handle large tanglegrams in affordable computational time and incorporates phylogenetic uncertainty in the analyses. We demonstrate its application with two real examples: passerine birds and their feather mites, and orchids and bee pollinators. In both systems, Random TaPas revealed low cophylogenetic signal, but mapping its variation onto the tanglegram pointed to two different coevolutionary processes. We suggest that the recursive partitioning of the tanglegram buffers the effect of phylogenetic nonindependence occurring in current global-fit methods and therefore Random TaPas is more reliable than regular global-fit methods to identify host-symbiont associations that contribute most to cophylogenetic signal. Random TaPas can be implemented in the public-domain statistical software R with scripts provided herein. A User's Guide is also available at GitHub.[Codiversification; coevolution; cophylogenetic signal; Symbiosis.].


Assuntos
Classificação/métodos , Simulação por Computador , Modelos Biológicos , Filogenia , Animais , Software , Simbiose
10.
Am J Bot ; 108(7): 1087-1111, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34297852

RESUMO

PREMISE: To further advance the understanding of the species-rich, economically and ecologically important angiosperm order Myrtales in the rosid clade, comprising nine families, approximately 400 genera and almost 14,000 species occurring on all continents (except Antarctica), we tested the Angiosperms353 probe kit. METHODS: We combined high-throughput sequencing and target enrichment with the Angiosperms353 probe kit to evaluate a sample of 485 species across 305 genera (76% of all genera in the order). RESULTS: Results provide the most comprehensive phylogenetic hypothesis for the order to date. Relationships at all ranks, such as the relationship of the early-diverging families, often reflect previous studies, but gene conflict is evident, and relationships previously found to be uncertain often remain so. Technical considerations for processing HTS data are also discussed. CONCLUSIONS: High-throughput sequencing and the Angiosperms353 probe kit are powerful tools for phylogenomic analysis, but better understanding of the genetic data available is required to identify genes and gene trees that account for likely incomplete lineage sorting and/or hybridization events.


Assuntos
Magnoliopsida , Myrtales , Núcleo Celular , Magnoliopsida/genética , Filogenia
11.
Am J Bot ; 108(7): 1166-1180, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34250591

RESUMO

PREMISE: The inference of evolutionary relationships in the species-rich family Orchidaceae has hitherto relied heavily on plastid DNA sequences and limited taxon sampling. Previous studies have provided a robust plastid phylogenetic framework, which was used to classify orchids and investigate the drivers of orchid diversification. However, the extent to which phylogenetic inference based on the plastid genome is congruent with the nuclear genome has been only poorly assessed. METHODS: We inferred higher-level phylogenetic relationships of orchids based on likelihood and ASTRAL analyses of 294 low-copy nuclear genes sequenced using the Angiosperms353 universal probe set for 75 species (representing 69 genera, 16 tribes, 24 subtribes) and a concatenated analysis of 78 plastid genes for 264 species (117 genera, 18 tribes, 28 subtribes). We compared phylogenetic informativeness and support for the nuclear and plastid phylogenetic hypotheses. RESULTS: Phylogenetic inference using nuclear data sets provides well-supported orchid relationships that are highly congruent between analyses. Comparisons of nuclear gene trees and a plastid supermatrix tree showed that the trees are mostly congruent, but revealed instances of strongly supported phylogenetic incongruence in both shallow and deep time. The phylogenetic informativeness of individual Angiosperms353 genes is in general better than that of most plastid genes. CONCLUSIONS: Our study provides the first robust nuclear phylogenomic framework for Orchidaceae and an assessment of intragenomic nuclear discordance, plastid-nuclear tree incongruence, and phylogenetic informativeness across the family. Our results also demonstrate what has long been known but rarely thoroughly documented: nuclear and plastid phylogenetic trees can contain strongly supported discordances, and this incongruence must be reconciled prior to interpretation in evolutionary studies, such as taxonomy, biogeography, and character evolution.


Assuntos
Genomas de Plastídeos , Orchidaceae , Núcleo Celular/genética , Orchidaceae/genética , Filogenia , Plastídeos/genética
12.
Mol Ecol ; 29(21): 4170-4185, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32881172

RESUMO

Hybridization has the potential to generate or homogenize biodiversity and is a particularly common phenomenon in plants, with an estimated 25% of plant species undergoing interspecific gene flow. However, hybridization in Amazonia's megadiverse tree flora was assumed to be extremely rare despite extensive sympatry between closely related species, and its role in diversification remains enigmatic because it has not yet been examined empirically. Using members of a dominant Amazonian tree family (Brownea, Fabaceae) as a model to address this knowledge gap, our study recovered extensive evidence of hybridization among multiple lineages across phylogenetic scales. More specifically, using targeted sequence capture our results uncovered several historical introgression events between Brownea lineages and indicated that gene tree incongruence in Brownea is best explained by reticulation, rather than solely by incomplete lineage sorting. Furthermore, investigation of recent hybridization using ~19,000 ddRAD loci recovered a high degree of shared variation between two Brownea species that co-occur in the Ecuadorian Amazon. Our analyses also showed that these sympatric lineages exhibit homogeneous rates of introgression among loci relative to the genome-wide average, implying a lack of selection against hybrid genotypes and persistent hybridization. Our results demonstrate that gene flow between multiple Amazonian tree species has occurred across temporal scales, and contrasts with the prevailing view of hybridization's rarity in Amazonia. Overall, our results provide novel evidence that reticulate evolution influenced diversification in part of the Amazonian tree flora, which is the most diverse on Earth.


Assuntos
Fluxo Gênico , Hibridização Genética , Brasil , Genoma , Filogenia
13.
Mol Phylogenet Evol ; 144: 106672, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31734454

RESUMO

Poor morphological and molecular differentiation in recently diversified lineages is a widespread phenomenon in plants. Phylogenetic relationships within such species complexes are often difficult to resolve because of the low variability in traditional molecular loci. Furthermore, biological phenomena responsible for topological incongruence such as Incomplete Lineage Sorting (ILS) and hybridisation complicate the resolution of phylogenetic relationships among closely related taxa. In this study, we employ a Genotyping-by-sequencing (GBS) approach to disentangle evolutionary relationships within a species complex belonging to the Neotropical orchid genus Cycnoches. This complex includes seven taxa distributed through Central America and the Colombian Chocó, and is nested within a clade estimated to have first diversified in the early Quaternary. Previous phylogenies inferred from few loci failed to provide support for internal relationships within the complex. Our Neighbour-net and coalescent-based analyses inferred from ca. 13,000 GBS loci obtained from 31 individuals belonging to six of the seven traditionally accepted Cycnoches taxa provided a robust phylogeny for this group. The genus Cycnoches includes three main clades that are further supported by morphological traits and geographic distributions. Similarly, a topology reconstructed through maximum likelihood (ML) inference of concatenated GBS loci produced results that are comparable with those reconstructed through coalescence and network-based methods. Our comparative phylogenetic informativeness analyses suggest that the low support evident in the ML phylogeny might be attributed to the abundance of uninformative GBS loci, which can account for up to 50% of the total number of loci recovered. The phylogenomic framework provided here, as well as morphological evidence and geographical patterns, suggest that the six entities previously thought to be different species or subspecies might actually represent only three distinct segregates. We further discuss the limited phylogenetic informativeness found in our GBS approach and its utility to disentangle relationships within recent and rapidly evolving species complexes. Our study is the first to demonstrate the utility of GBS data to reconstruct relationships within young (~2 Ma) Neotropical plant clades, opening new avenues for studies of species complexes that populate the species-rich orchid family.


Assuntos
Evolução Biológica , Orchidaceae/classificação , Orchidaceae/genética , América Central , DNA de Plantas/análise , Genótipo , Técnicas de Genotipagem/métodos , Hibridização Genética , Filogenia , Filogeografia , Análise de Sequência de DNA/métodos
14.
Molecules ; 24(2)2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650579

RESUMO

A straightforward and novel method for transformation of readily available 1,3-benzoxazines to secondary phosphonates and α-aminophosphonates using boron trifluoride etherate as catalyst is developed. The formation of phosphonates proceeds through ortho-quinone methide (o-QM) generated in situ, followed by a phospha-Michael addition reaction. On the other hand, the α-aminophosphonates were obtained by iminium ion formation and the subsequence nucleophilic substitution of alkylphosphites. This method can be also used for the preparation of o-hydroxybenzyl ethers through oxa-Michael addition.


Assuntos
Benzoxazinas/química , Organofosfonatos/síntese química , Catálise , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Organofosfonatos/química
15.
Mol Phylogenet Evol ; 126: 279-292, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29702213

RESUMO

The flora of the Neotropics is unmatched in its diversity, however the mechanisms by which diversity has accumulated are debated and largely unclear. The Brownea clade (Leguminosae) is a characteristic component of the Neotropical flora, and the species within it are diverse in their floral morphology, attracting a wide variety of pollinators. This investigation aimed to estimate species divergence times and infer relationships within the group, in order to test whether the Brownea clade followed the 'cradle' or 'museum' model of diversification, i.e. whether species evolved rapidly over a short time period, or gradually over many millions of years. We also aimed to trace the spatio-temporal evolution of the clade by estimating ancestral biogeographical patterns in the group. We used BEAST to build a dated phylogeny of 73 Brownea clade species using three molecular markers (ITS, trnK and psbA-trnH), resulting in well-resolved phylogenetic relationships within the clade, as well as robust divergence time estimates from which we inferred diversification rates and ancestral biogeography. Our analyses revealed an Eocene origin for the group, after which the majority of diversification happened in Amazonia during the Miocene, most likely concurrent with climatic and geological changes caused by the rise of the Andes. We found no shifts in diversification rate over time, suggesting a gradual accumulation of lineages with low extinction rates. These results may help to understand why Amazonia is host to the highest diversity of tree species on Earth.


Assuntos
Evolução Biológica , Fabaceae/classificação , Árvores/classificação , Clima Tropical , Biodiversidade , Calibragem , Fósseis , Filogenia , Filogeografia , América do Sul , Fatores de Tempo
16.
Mol Phylogenet Evol ; 127: 952-960, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29969657

RESUMO

The colonization of the epiphytic niche of Neotropical forest canopies played an important role in orchid's extraordinary diversification, with rare reversions to the terrestrial habit. To understand the evolutionary context of those reversals, we investigated the diversification of Galeandra, a Neotropical orchid genus which includes epiphytic and terrestrial species. We hypothesized that reversion to the terrestrial habit accompanied the expansion of savannas. To test this hypothesis we generated a comprehensive time-calibrated phylogeny and employed comparative methods. We found that Galeandra originated towards the end of the Miocene in Amazonia. The terrestrial clade originated synchronously with the rise of dry vegetation biomes in the last 5 million years, suggesting that aridification dramatically impacted plant diversification and habits in the Neotropics. Shifts in habit impacted floral spur lengths and geographic range size, but not climatic niche. The longer spurs and narrower ranges characterize epiphytic species, which probably adapted to specialized long-tongued Euglossini bee pollinators inhabiting forested habits. The terrestrial species present variable floral spurs and wider distribution ranges, with evidence of self-pollination, suggesting the loss of specialized pollination system and concomitant range expansion. Our study highlights how climate change impacted habit evolution and associated traits such as mutualistic interactions with pollinators.


Assuntos
Ecossistema , Orchidaceae/fisiologia , Árvores/fisiologia , Animais , Abelhas/fisiologia , Calibragem , Clima , Orchidaceae/classificação , Filogenia , Filogeografia , Polinização , Fatores de Tempo
17.
Mol Phylogenet Evol ; 129: 27-47, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30041026

RESUMO

Phylogenetic relationships in species complexes and lineages derived from rapid diversifications are often challenging to resolve using morphology or standard DNA barcoding markers. The hyper-diverse genus Lepanthes from Neotropical cloud forest includes over 1200 species and many recent, explosive diversifications that have resulted in poorly supported nodes and morphological convergence across clades. Here, we assess the performance of 446 nuclear-plastid-mitochondrial markers derived from an anchored hybrid enrichment approach (AHE) coupled with coalescence- and species network-based inferences to resolve phylogenetic relationships and improve species recognition in the Lepanthes horrida species group. In addition to using orchid-specific probes to increase enrichment efficiency, we improved gene tree resolution by extending standard angiosperm targets into adjacent exons. We found high topological discordance among individual gene trees, suggesting that hybridization/polyploidy may have promoted speciation in the lineage via formation of new hybrid taxa. In addition, we identified ten loci with the highest phylogenetic informativeness values from these genomes. Most previous phylogenetic sampling in the Pleurothallidinae relies on two regions (ITS and matK), therefore, the evaluation of other markers such as those shown here may be useful in future phylogenetic studies in the orchid family. Coalescent-based species tree estimation methods resolved the phylogenetic relationships of the L. horrida species group. The resolution of the phylogenetic estimations was improved with the inclusion of extended anchor targets. This approach produced longer loci with higher discriminative power. These analyses also disclosed two undescribed species, L. amicitiae and L. genetoapophantica, formally described here, which are also supported by morphology. Our study demonstrates the utility of combined genomic evidence to disentangle phylogenetic relationships at very shallow levels of the tree of life, and in clades showing convergent trait evolution. With a fully resolved phylogeny, is it possible to disentangle traits evolving in parallel or convergently across these orchid lineages such as flower color and size from diagnostic traits such as the shape and orientation of the lobes of the petals and lip.


Assuntos
Núcleo Celular/genética , Hibridização Genética , Mitocôndrias/genética , Orchidaceae/genética , Plastídeos/genética , Análise por Conglomerados , Bases de Dados Genéticas , Flores/anatomia & histologia , Loci Gênicos , Marcadores Genéticos , Funções Verossimilhança , Filogenia , Especificidade da Espécie
18.
Am J Bot ; 105(3): 614-622, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29603138

RESUMO

Providing science and society with an integrated, up-to-date, high quality, open, reproducible and sustainable plant tree of life would be a huge service that is now coming within reach. However, synthesizing the growing body of DNA sequence data in the public domain and disseminating the trees to a diverse audience are often not straightforward due to numerous informatics barriers. While big synthetic plant phylogenies are being built, they remain static and become quickly outdated as new data are published and tree-building methods improve. Moreover, the body of existing phylogenetic evidence is hard to navigate and access for non-experts. We propose that our community of botanists, tree builders, and informaticians should converge on a modular framework for data integration and phylogenetic analysis, allowing easy collaboration, updating, data sourcing and flexible analyses. With support from major institutions, this pipeline should be re-run at regular intervals, storing trees and their metadata long-term. Providing the trees to a diverse global audience through user-friendly front ends and application development interfaces should also be a priority. Interactive interfaces could be used to solicit user feedback and thus improve data quality and to coordinate the generation of new data. We conclude by outlining a number of steps that we suggest the scientific community should take to achieve global phylogenetic synthesis.


Assuntos
Disseminação de Informação , Gestão da Informação , Filogenia , Plantas/genética , DNA de Plantas , Humanos , Tecnologia da Informação , Análise de Sequência de DNA
19.
New Phytol ; 215(2): 891-905, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28631324

RESUMO

The Andean mountains of South America are the most species-rich biodiversity hotspot worldwide with c. 15% of the world's plant species, in only 1% of the world's land surface. Orchids are a key element of the Andean flora, and one of the most prominent components of the Neotropical epiphyte diversity, yet very little is known about their origin and diversification. We address this knowledge gap by inferring the biogeographical history and diversification dynamics of the two largest Neotropical orchid groups (Cymbidieae and Pleurothallidinae), using two unparalleled, densely sampled orchid phylogenies (including more than 400 newly generated DNA sequences), comparative phylogenetic methods, geological and biological datasets. We find that the majority of Andean orchid lineages only originated in the last 20-15 million yr. Andean lineages are derived from lowland Amazonian ancestors, with additional contributions from Central America and the Antilles. Species diversification is correlated with Andean orogeny, and multiple migrations and recolonizations across the Andes indicate that mountains do not constrain orchid dispersal over long timescales. Our study sheds new light on the timing and geography of a major Neotropical diversification, and suggests that mountain uplift promotes species diversification across all elevational zones.


Assuntos
Especiação Genética , Orchidaceae/fisiologia , Filogenia , Biodiversidade , Orchidaceae/genética , Filogeografia , América do Sul
20.
Syst Biol ; 65(1): 51-65, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26430060

RESUMO

Phylogenetic relationships inferred from multilocus organellar and nuclear DNA data are often difficult to resolve because of evolutionary conflicts among gene trees. However, conflicting or "outlier" associations (i.e., linked pairs of "operational terminal units" in two phylogenies) among these data sets often provide valuable information on evolutionary processes such as chloroplast capture following hybridization, incomplete lineage sorting, and horizontal gene transfer. Statistical tools that to date have been used in cophylogenetic studies only also have the potential to test for the degree of topological congruence between organellar and nuclear data sets and reliably detect outlier associations. Two distance-based methods, namely ParaFit and Procrustean Approach to Cophylogeny (PACo), were used in conjunction to detect those outliers contributing to conflicting phylogenies independently derived from chloroplast and nuclear sequence data. We explored their efficiency of retrieving outlier associations, and the impact of input data (unit branch length and additive trees) between data sets, by using several simulation approaches. To test their performance using real data sets, we additionally inferred the phylogenetic relationships within Neotropical Catasetinae (Epidendroideae, Orchidaceae), which is a suitable group to investigate phylogenetic incongruence because of hybridization processes between some of its constituent species. A comparison between trees derived from chloroplast and nuclear sequence data reflected strong, well-supported incongruence within Catasetum, Cycnoches, and Mormodes. As a result, outliers among chloroplast and nuclear data sets, and in experimental simulations, were successfully detected by PACo when using patristic distance matrices obtained from phylograms, but not from unit branch length trees. The performance of ParaFit was overall inferior compared to PACo, using either phylograms or unit branch lengths as input data. Because workflows for applying cophylogenetic analyses are not standardized yet, we provide a pipeline for executing PACo and ParaFit as well as displaying outlier associations in plots and trees by using the software R. The pipeline renders a method to identify outliers with high reliability and to assess the combinability of the independently derived data sets by means of statistical analyses.


Assuntos
Evolução Biológica , Cloroplastos/classificação , Cloroplastos/genética , Classificação/métodos , Orchidaceae/classificação , Orchidaceae/genética , Simbiose/genética , DNA de Cloroplastos/genética , DNA de Plantas/genética , Filogenia , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA