Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731880

RESUMO

Adipose tissue is a multifunctional organ that regulates many physiological processes such as energy homeostasis, nutrition, the regulation of insulin sensitivity, body temperature, and immune response. In this review, we highlight the relevance of the different mediators that control adipose tissue activity through a systematic review of the main players present in white and brown adipose tissues. Among them, inflammatory mediators secreted by the adipose tissue, such as classical adipokines and more recent ones, elements of the immune system infiltrated into the adipose tissue (certain cell types and interleukins), as well as the role of intestinal microbiota and derived metabolites, have been reviewed. Furthermore, anti-obesity mediators that promote the activation of beige adipose tissue, e.g., myokines, thyroid hormones, amino acids, and both long and micro RNAs, are exhaustively examined. Finally, we also analyze therapeutic strategies based on those mediators that have been described to date. In conclusion, novel regulators of obesity, such as microRNAs or microbiota, are being characterized and are promising tools to treat obesity in the future.


Assuntos
Tecido Adiposo , Obesidade , Humanos , Animais , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Adipocinas/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Microbioma Gastrointestinal , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Mediadores da Inflamação/metabolismo , Metabolismo Energético
2.
Liver Int ; 43(8): 1714-1728, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37057737

RESUMO

BACKGROUND AND AIMS: The molecular mechanisms driving non-alcoholic fatty liver disease (NAFLD) are poorly understood; however, microRNAs might play a key role in these processes. We hypothesize that let-7d-5p could contribute to the pathophysiology of NAFLD and serve as a potential diagnostic biomarker. METHODS: We evaluated let-7d-5p levels and its targets in liver biopsies from a cross-sectional study including patients with NAFLD and healthy donors, and from a mouse model of NAFLD. Moreover, the induction of let-7d-5p expression by fatty acids was evaluated in vitro. Further, we overexpressed let-7d-5p in vitro to corroborate the results observed in vivo. Circulating let-7d-5p and its potential as a NAFLD biomarker was determined in isolated extracellular vesicles from human plasma by RT-qPCR. RESULTS: Our results demonstrate that hepatic let-7d-5p was significantly up-regulated in patients with steatosis, and this increase correlated with obesity and a decreased expression of AKT serine/threonine kinase (AKT), insulin-like growth factor 1 (IGF1), IGF-I receptor (IGF1R) and insulin receptor (INSR). These alterations were corroborated in a NAFLD mouse model. In vitro, fatty acids increased let-7d-5p expression, and its overexpression decreased AKT, IGF-IR and IR protein expression. Furthermore, let-7d-5p hindered AKT phosphorylation in vitro after insulin stimulation. Finally, circulating let-7d-5p significantly decreased in steatosis patients and receiver operating characteristic (ROC) analyses confirmed its utility as a diagnostic biomarker. CONCLUSIONS: Our results highlight the emerging role of let-7d-5p as a potential therapeutic target for NAFLD since its overexpression impairs hepatic insulin signalling, and also, as a novel non-invasive biomarker for NAFLD diagnosis.


Assuntos
Resistência à Insulina , MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Biomarcadores , Estudos Transversais , Ácidos Graxos , Insulina , MicroRNAs/genética , MicroRNAs/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Proteínas Proto-Oncogênicas c-akt
3.
Int J Mol Sci ; 23(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36142173

RESUMO

(1) Background: Cardiovascular diseases (CVDs) are the main cause of death in developed countries, being atherosclerosis, a recurring process underlying their apparition. MicroRNAs (miRNAs) modulate the expression of their targets and have emerged as key players in CVDs; (2) Methods: 18 miRNAs were selected (Pubmed and GEO database) for their possible role in promoting atherosclerosis and were analysed by RT-qPCR in the aorta from apolipoprotein E-deficient (ApoE-/-) mice. Afterwards, the altered miRNAs in the aorta from 18 weeks-ApoE-/- mice were studied in human aortic and carotid samples; (3) Results: miR-155-5p was overexpressed and miR-143-3p was downregulated in mouse and human atherosclerotic lesions. In addition, a significant decrease in protein kinase B (AKT), target of miR-155-5p, and an increase in insulin-like growth factor type II receptor (IGF-IIR), target of miR-143-3p, were noted in aortic roots from ApoE-/- mice and in carotid plaques from patients with advanced carotid atherosclerosis (ACA). Finally, the overexpression of miR-155-5p reduced AKT levels and its phosphorylation in vascular smooth muscle cells, while miR-143-3p overexpression decreased IGF-IIR reducing apoptosis in vascular cells; (4) Conclusions: Our results suggest that miR-155-5p and miR-143-3p may be implicated in insulin resistance and plaque instability by the modulation of their targets AKT and IGF-IIR, contributing to the progression of atherosclerosis.


Assuntos
Aterosclerose , Resistência à Insulina , MicroRNAs , Placa Aterosclerótica , Animais , Apolipoproteínas E/genética , Aterosclerose/metabolismo , Humanos , Insulina , Resistência à Insulina/genética , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Somatomedinas
4.
Cardiovasc Diabetol ; 17(1): 31, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29463262

RESUMO

BACKGROUND: Clinical complications associated with atherosclerotic plaques arise from luminal obstruction due to plaque growth or destabilization leading to rupture. We previously demonstrated that overexpression of insulin receptor isoform A (IRA) and insulin-like growth factor-I receptor (IGF-IR) confers a proliferative and migratory advantage to vascular smooth muscle cells (VSMCs) promoting plaque growth in early stages of atherosclerosis. However, the role of insulin receptor (IR) isoforms, IGF-IR or insulin-like growth factor-II receptor (IGF-IIR) in VSMCs apoptosis during advanced atherosclerosis remains unclear. METHODS: We evaluated IR isoforms expression in human carotid atherosclerotic plaques by consecutive immunoprecipitations of insulin receptor isoform B (IRB) and IRA. Western blot analysis was performed to measure IGF-IR, IGF-IIR, and α-smooth muscle actin (α-SMA) expression in human plaques. The expression of those proteins, as well as the presence of apoptotic cells, was analyzed by immunohistochemistry in experimental atherosclerosis using BATIRKO; ApoE-/- mice, a model showing more aggravated vascular damage than ApoE-/- mice. Finally, apoptosis of VSMCs bearing IR (IRLoxP+/+ VSMCs), or not (IR-/- VSMCs), expressing IRA (IRA VSMCs) or expressing IRB (IRB VSMCs), was assessed by Western blot against cleaved caspase 3. RESULTS: We observed a significant decrease of IRA/IRB ratio in human complicated plaques as compared to non-complicated regions. Moreover, complicated plaques showed a reduced IGF-IR expression, an increased IGF-IIR expression, and lower levels of α-SMA indicating a loss of VSMCs. In experimental atherosclerosis, we found a significant decrease of IRA with an increased IRB expression in aorta from 24-week-old BATIRKO; ApoE-/- mice. Furthermore, atherosclerotic plaques from BATIRKO; ApoE-/- mice had less VSMCs content and higher number of apoptotic cells. In vitro experiments showed that IGF-IR inhibition by picropodophyllin induced apoptosis in VSMCs. Apoptosis induced by thapsigargin was lower in IR-/- VSMCs expressing higher IGF-IR levels as compared to IRLoxP+/+ VSMCs. Finally, IRB VSMCs are more prone to thapsigargin-induced apoptosis than IRA or IRLoxP+/+ VSMCs. CONCLUSIONS: In advanced human atherosclerosis, a reduction of IRA/IRB ratio, decreased IGF-IR expression, or increased IGF-IIR may contribute to VSMCs apoptosis, promoting plaque instability and increasing the risk of plaque rupture and its clinical consequences.


Assuntos
Doenças da Aorta/metabolismo , Doenças das Artérias Carótidas/metabolismo , Músculo Liso Vascular/metabolismo , Placa Aterosclerótica , Receptor de Insulina/metabolismo , Receptores de Somatomedina/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Antígenos CD/metabolismo , Aorta Torácica/metabolismo , Aorta Torácica/patologia , Doenças da Aorta/genética , Doenças da Aorta/patologia , Apoptose , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , Doenças das Artérias Carótidas/patologia , Linhagem Celular , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Pessoa de Meia-Idade , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Isoformas de Proteínas , Receptor IGF Tipo 1/metabolismo , Receptor IGF Tipo 2/metabolismo , Ruptura Espontânea
5.
Diabetologia ; 59(12): 2702-2710, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27600278

RESUMO

AIMS/HYPOTHESIS: In the postprandial state, the liver regulates glucose homeostasis by glucose uptake and conversion to glycogen and lipids. Glucose and insulin signalling finely regulate glycogen synthesis through several mechanisms. Glucose uptake in hepatocytes is favoured by the insulin receptor isoform A (IRA), rather than isoform B (IRB). Thus, we hypothesised that, in hepatocytes, IRA would increase glycogen synthesis by promoting glucose uptake and glycogen storage. METHODS: We addressed the role of insulin receptor isoforms on glycogen metabolism in vitro in immortalised neonatal hepatocytes. In vivo, IRA or IRB were specifically expressed in the liver using adeno-associated virus vectors in inducible liver insulin receptor knockout (iLIRKO) mice, a model of type 2 diabetes. The role of IR isoforms in glycogen synthesis and storage in iLIRKO was subsequently investigated. RESULTS: In immortalised hepatocytes, IRA, but not IRB expression induced an increase in insulin signalling that was associated with elevated glycogen synthesis, glycogen synthase activity and glycogen storage. Similarly, elevated IRA, but not IRB expression in the livers of iLIRKO mice induced an increase in glycogen content. CONCLUSIONS/INTERPRETATION: We provide new insight into the role of IRA in the regulation of glycogen metabolism in cultured hepatocytes and in the livers of a mouse model of type 2 diabetes. Our data strongly suggest that IRA is more efficient than IRB at promoting glycogen synthesis and storage. Therefore, we suggest that IRA expression in the liver could provide an interesting therapeutic approach for the regulation of hepatic glucose content and glycogen storage.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Glicogênio Fosforilase/metabolismo , Glicogênio Sintase/metabolismo , Glicogênio/metabolismo , Glicogênio Hepático/metabolismo , Fígado/metabolismo , Isoformas de Proteínas/metabolismo , Receptor de Insulina/metabolismo , Animais , Western Blotting , Linhagem Celular , Diabetes Mellitus Tipo 2/genética , Glucose/metabolismo , Glicogênio Fosforilase/genética , Glicogênio Sintase/genética , Glicogenólise , Hepatócitos , Camundongos , Camundongos Knockout , Isoformas de Proteínas/genética , Receptor de Insulina/genética
6.
Cardiovasc Diabetol ; 14: 75, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26055507

RESUMO

BACKGROUND: Several translational studies have identified the differential role between saturated and unsaturated fatty acids at cardiovascular level. However, the molecular mechanisms that support the protective role of oleate in cardiovascular cells are poorly known. For these reasons, we studied the protective role of oleate in the insulin resistance and in the atherosclerotic process at cellular level such as in cardiomyocytes (CMs), vascular smooth muscle cells (VSMCs) and endothelial cells (ECs). METHODS: The effect of oleate in the cardiovascular insulin resistance, vascular dysfunction, inflammation, proliferation and apoptosis of VSMCs were analyzed by Western blot, qRT-PCR, BrdU incorporation and cell cycle analysis. RESULTS: Palmitate induced insulin resistance. However, oleate not only did not induce cardiovascular insulin resistance but also had a protective effect against insulin resistance induced by palmitate or TNFα. One mechanism involved might be the prevention by oleate of JNK-1/2 or NF-κB activation in response to TNF-α or palmitate. Oleate reduced MCP-1 and ICAM-1 and increased eNOS expression induced by proinflammatory cytokines in ECs. Furthermore, oleate impaired the proliferation induced by TNF-α, angiotensin II or palmitate and the apoptosis induced by TNF-α or thapsigargin in VSMCs. CONCLUSIONS: Our data suggest a differential role between oleate and palmitate and support the concept of the cardioprotector role of oleate as the main lipid component of virgin olive oil. Thus, oleate protects against cardiovascular insulin resistance, improves endothelial dysfunction in response to proinflammatory signals and finally, reduces proliferation and apoptosis in VSMCs that may contribute to an ameliorated atherosclerotic process and plaque stability.


Assuntos
Aterosclerose/metabolismo , Resistência à Insulina , Músculo Liso Vascular/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Ácido Oleico/farmacologia , RNA Mensageiro/efeitos dos fármacos , Angiotensina II/farmacologia , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Quimiocina CCL2/efeitos dos fármacos , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Inflamação , Molécula 1 de Adesão Intercelular/efeitos dos fármacos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Músculo Liso Vascular/citologia , Miócitos Cardíacos/metabolismo , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo III/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Palmitatos/farmacologia , Ácido Palmítico/farmacologia , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Necrose Tumoral alfa/farmacologia , Vasoconstritores/farmacologia
7.
Cardiovasc Diabetol ; 13: 108, 2014 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-25077985

RESUMO

BACKGROUND: It has been reported that increased expression of UCP-2 in the vasculature may prevent the development of atherosclerosis in patients with increased production of reactive oxygen species, as in the diabetes, obesity or hypertension. Thus, a greater understanding in the modulation of UCP-2 could improve the atherosclerotic process. However, the effect of TNF-α or insulin modulating UCP-2 in the vascular wall is completely unknown. In this context, we propose to study new molecular mechanisms that help to explain whether the moderate hyperinsulinemia or lowering TNF-α levels might have a protective role against vascular damage mediated by UCP-2 expression levels. METHODS: We analyzed the effect of insulin or oleic acid in presence or not of TNF-α on UCP-2 expression in murine endothelial and vascular smooth muscle cells. At this step, we wondered if some mechanisms studied in vitro could be of any relevance in vivo. We used the following experimental models: ApoE-/- mice under Western type diet for 2, 6, 12 or 18 weeks, BATIRKO mice under high-fat diet for 16 weeks and 52-week-old BATIRKO mice with o without anti-TNF-α antibody pre-treatment. RESULTS: Firstly, we found that TNF-α pre-treatment reduced UCP-2 expression induced by insulin in vascular cells. Secondly, we observed a progressive reduction of UCP-2 levels together with an increase of lipid depots and lesion area in aorta from ApoE-/- mice. In vivo, we also observed that moderate hyperinsulinemic obese BATIRKO mice have lower TNF-α and ROS levels and increased UCP-2 expression levels within the aorta, lower lipid accumulation, vascular dysfunction and macrovascular damage. We also observed that the anti-TNF-α antibody pre-treatment impaired the loss of UCP-2 expression within the aorta and relieved vascular damage observed in 52-week-old BATIRKO mice. Finally, we observed that the pretreatment with iNOS inhibitor prevented UCP-2 reduction induced by TNF-α in vascular cells. Moreover, iNOS levels are augmented in aorta from mice with lower UCP-2 levels and higher TNF-α levels. CONCLUSIONS: Our data suggest that moderate hyperinsulinemia in response to insulin resistance or lowering of TNF-α levels within the aorta attenuates vascular damage, this protective effect being mediated by UCP-2 expression levels through iNOS.


Assuntos
Insulina/farmacologia , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/biossíntese , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/biossíntese , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Animais , Células Cultivadas , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Knockout , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Proteína Desacopladora 2
8.
Artigo em Inglês | MEDLINE | ID: mdl-38270847

RESUMO

Atherosclerosis commonly remains undiagnosed until disease manifestations occur. The disease is associated with dysregulated micro(mi)RNAs, but how this is linked to atherosclerosis-related immune reactions is largely unknown. A mouse model of carotid atherosclerosis, human APOB100-transgenic Ldlr-/- (HuBL), was used to study the spatiotemporal dysregulation of a set of miRNAs. Middle-aged HuBL mice with established atherosclerosis had decreased levels of miR-143-3p in their carotid arteries. In young HuBL mice, early atherosclerosis was observed in the carotid bifurcation, which had lower levels of miR-15a-5p, miR-143-3p, and miR-199a-3p, and higher levels of miR-155-5p. The dysregulation of these miRNAs was reflected by specific immune responses during atheroprogression. Finally, levels of miR-143-3p were 70.6% lower in extracellular vesicles isolated from the plasma of patients with carotid stenosis compared to healthy controls. Since miR-143-3p levels progressively decrease when transitioning between early and late experimental carotid atherosclerosis, we propose it as a biomarker for atherosclerosis.

9.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167327, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38945455

RESUMO

The prevalence of cardiovascular diseases (CVDs) is increasing in the last decades, even is the main cause of death in first world countries being atherosclerosis one of the principal triggers. Therefore, there is an urgent need to decipher the underlying mechanisms involved in atherosclerosis progression. In this respect, microRNAs dysregulation is frequently involved in the progression of multiple diseases including CVDs. Our aim was to demonstrate that let-7d-5p unbalance could contribute to the pathophysiology of atherosclerosis and serve as a potential diagnostic biomarker. We evaluated let-7d-5p levels in vascular biopsies and exosome-enriched extracellular vesicles (EVs) from patients with carotid atherosclerosis and healthy donors. Moreover, we overexpressed let-7d-5p in vitro in vascular smooth muscle cells (VSMCs) to decipher the targets and the underlying mechanisms regulated by let-7d-5p in atherosclerosis. Our results demonstrate that let-7d-5p was significantly upregulated in carotid plaques from overweight patients with carotid atherosclerosis. Moreover, in EVs isolated from plasma, we found that let-7d-5p levels were increased in carotid atherosclerosis patients compared to control subjects specially in overweight patients. Receiver Operating Characteristic (ROC) analyses confirmed its utility as a diagnostic biomarker for atherosclerosis. In VSMCs, we demonstrated that increased let-7d-5p levels impairs cell proliferation and could serve as a protective mechanism against inflammation by impairing NF-κB pathway without affecting insulin resistance. In summary, our results highlight the role of let-7d-5p as a potential therapeutic target for atherosclerosis since its overexpression induce a decrease in inflammation and VSMCs proliferation, and also, as a novel non-invasive diagnostic biomarker for atherosclerosis in overweight patients.

10.
Antioxidants (Basel) ; 12(2)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36829822

RESUMO

Atherosclerosis and non-alcoholic fatty liver disease (NAFLD) are pathologies related to ectopic fat accumulation, both of which are continuously increasing in prevalence. These threats are prompting researchers to develop effective therapies for their clinical management. One of the common pathophysiological alterations that underlies both diseases is oxidative stress (OxS), which appears as a result of lipid deposition in affected tissues. However, the molecular mechanisms that lead to OxS generation are different in each disease. Non-coding RNAs (ncRNAs) are RNA transcripts that do not encode proteins and function by regulating gene expression. In recent years, the involvement of ncRNAs in OxS modulation has become more recognized. This review summarizes the most recent advances regarding ncRNA-mediated regulation of OxS in atherosclerosis and NAFLD. In both diseases, ncRNAs can exert pro-oxidant or antioxidant functions by regulating gene targets and even other ncRNAs, positioning them as potential therapeutic targets. Interestingly, both diseases have common altered ncRNAs, suggesting that the same molecule can be targeted simultaneously when both diseases coexist. Finally, since some ncRNAs have already been used as therapeutic agents, their roles as potential drugs for the clinical management of atherosclerosis and NAFLD are analyzed.

11.
Clin Transl Med ; 13(8): e1363, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37605307

RESUMO

BACKGROUND: Cardiovascular diseases (CVDs) prevalence has significantly increased in the last decade and atherosclerosis development is the main trigger. MicroRNAs (miRNAs) are non-coding RNAs that negatively regulate gene expression of their target and their levels are frequently altered in CVDs. METHODS: By RT-qPCR, we analysed miR-9-5p, miR-15a-5p, miR-16-5p and miR-199a-3p levels in aorta from apolipoprotein knockout (ApoE-/- ) mice, an experimental model of hyperlipidemia-induced atherosclerosis, and in human aortic and carotid atherosclerotic samples. By in silico studies, Western blot analysis and immunofluorescence studies, we detected the targets of the altered miRNAs. RESULTS: Our results show that miR-15a-5p and miR-199a-3p are significantly decreased in carotid and aortic samples from patients and mice with atherosclerosis. In addition, we found an increased expression in targets of both miRNAs that participate in the inflammatory pathway of nuclear factor kappa B (NF-κB), such as IKKα, IKKß and p65. In human vein endothelial cells (HUVECs) and vascular smooth muscle cells (VSMCs), the overexpression of miR-15a-5p or miR-199a-3p decreased IKKα, IKKß and p65 protein levels as well as NF-κB activation. On the other hand, miR-15a-5p and miR-199a-3p overexpression reduced ox-LDL uptake and the inflammation regulated by NF-κB in VSMCs. Moreover, although miR-15a-5p and miR-199a-3p were significantly increased in exosomes from patients with advanced carotid atherosclerosis, only in the ROC analyses for miR-15a-5p, the area under the curve was 0.8951 with a p value of .0028. CONCLUSIONS: Our results suggest that the decrease of miR-199a-3p and miR-15a-5p in vascular samples from human and experimental atherosclerosis could be involved in the NF-κB activation pathway, as well as in ox-LDL uptake by VSMCs, contributing to inflammation and progression atherosclerosis. Finally, miR-15a-5p could be used as a novel diagnostic biomarker for advanced atherosclerosis.


Assuntos
Aterosclerose , Doenças Cardiovasculares , MicroRNAs , Humanos , Animais , Camundongos , Quinase I-kappa B , NF-kappa B/genética , Células Endoteliais , MicroRNAs/genética , Aterosclerose/genética , Proteínas Serina-Treonina Quinases
12.
Gastroenterol Hepatol ; 35(5): 309-16, 2012 May.
Artigo em Espanhol | MEDLINE | ID: mdl-22495124

RESUMO

INTRODUCTION: Chronic hepatitis C virus (HCV) infection is associated with glomerular disease, which is manifested by proteinuria with or without renal dysfunction. METHOD: To determine the prevalence of HCV-associated renal injury and associated risk factors, we performed an observational, analytic, cross-sectional study of 120 HCV-positive patients and 145 HCV-negative controls. Data were gathered from medical records and history-taking and at least three blood and urine analyses were performed over a 1-year period. Renal insufficiency was defined as an estimated glomerular filtration rate of less than 60ml/min/1.73 m2 and/or microalbuminuria of more than 20mg/l or a microalbumin/creatinine ratio higher than 30 mcg/mg. RESULTS: The prevalence of microalbuminuria and renal insufficiency was 19.3% and 11.7% in HCV-positive patients versus 10.5% and 0.7% in HCV-negative controls (p 0.04), respectively. A total of 26.1% of HCV-positive patients had signs of renal injury compared with 11.8% of HCV-negative controls (p 0.003). HCV infection was independently and significantly associated with the probability of worsening of renal function. The prevalence of microalbuminuria and renal insufficiency progressively increased with greater age. CONCLUSION: HCV-positive patients show a high prevalence of microalbuminuria and renal insufficiency compared with HCV-negative individuals. The risk of HCV-associated renal insufficiency is independent of the presence of other predisposing factors such hypertension and diabetes.


Assuntos
Albuminúria/etiologia , Hepatite C Crônica/complicações , Insuficiência Renal/etiologia , Albuminúria/epidemiologia , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Insuficiência Renal/epidemiologia
13.
Cells ; 10(8)2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34440804

RESUMO

BACKGROUND: Cardiovascular dysfunction is linked to insulin-resistant states. In this paper, we analyzed whether the severe hepatic insulin resistance of an inducible liver-specific insulin receptor knockout (iLIRKO) might generate vascular insulin resistance and dysfunction, and whether insulin receptor (IR) isoforms gene therapy might revert it. METHODS: We studied in vivo insulin signaling in aorta artery and heart from iLIRKO. Vascular reactivity and the mRNA levels of genes involved in vascular dysfunction were analyzed in thoracic aorta rings by qRT-PCR. Finally, iLIRKO mice were treated with hepatic-specific gene therapy to analyze vascular dysfunction improvement. RESULTS: Our results suggest that severe hepatic insulin resistance was expanded to cardiovascular tissues. This vascular insulin resistance observed in aorta artery from iLIRKO mice correlated with a reduction in both PI3K/AKT/eNOS and p42/44 MAPK pathways, and it might be implicated in their vascular alterations characterized by endothelial dysfunction, hypercontractility and eNOS/iNOS levels' imbalance. Finally, regarding long-term hepatic expression of IR isoforms, IRA was more efficient than IRB in the improvement of vascular dysfunction observed in iLIRKO mice. CONCLUSION: Severe hepatic insulin resistance is sufficient to produce cardiovascular insulin resistance and dysfunction. Long-term hepatic expression of IRA restored the vascular damage observed in iLIRKO mice.


Assuntos
Diabetes Mellitus/terapia , Resistência à Insulina , Fígado/metabolismo , Receptor de Insulina/metabolismo , Doenças Vasculares/fisiopatologia , Animais , Sistema Cardiovascular/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Diabetes Mellitus/fisiopatologia , Terapia Genética , Insulina/metabolismo , Camundongos , Camundongos Knockout , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptor de Insulina/genética , Transdução de Sinais , Doenças Vasculares/metabolismo
14.
Dis Model Mech ; 14(12)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34850865

RESUMO

The prevalence of non-alcoholic fatty liver disease (NAFLD) is constantly increasing, and altered expression of microRNAs (miRNAs) fosters the development and progression of many pathologies, including NAFLD. Therefore, we explored the role of new miRNAs involved in the molecular mechanisms that trigger NAFLD progression and evaluated them as biomarkers for diagnosis. As a NAFLD model, we used apolipoprotein E-deficient mice administered a high-fat diet for 8 or 18 weeks. We demonstrated that insulin resistance and decreased lipogenesis and autophagy observed after 18 weeks on the diet are related to a concerted regulation carried out by miR-26b-5p, miR-34a-5p, miR-149-5p and miR-375-3p. We also propose circulating let-7d-5p and miR-146b-5p as potential biomarkers of early stages of NAFLD. Finally, we confirmed that circulating miR-34a-5p and miR-375-3p are elevated in the late stages of NAFLD and that miR-27b-3p and miR-122-5p are increased with disease progression. Our results reveal a synergistic regulation of key processes in NAFLD development and progression by miRNAs. Further investigation is needed to unravel the roles of these miRNAs for developing new strategies for NAFLD treatment. This article has an associated First Person interview with the joint first authors of the paper.


Assuntos
Apolipoproteínas E , Resistência à Insulina , MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Animais , Apolipoproteínas E/genética , Dieta Hiperlipídica , Resistência à Insulina/genética , Fígado/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia
15.
Front Med (Lausanne) ; 7: 527059, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33102495

RESUMO

According to the World Health Organization, the continuing surge in obesity pandemic creates a substantial increase in incidences of metabolic disorders, such as non-alcoholic fatty liver disease (NAFLD), type 2 diabetes mellitus, and cardiovascular disease. MicroRNAs (miRNAs) belong to an evolutionarily conserved class of short (20-22 nucleotides in length) and single-stranded non-coding RNAs. In mammals, miRNAs function as critical post-transcriptional negative regulators involved not only in many biological processes but also in the development of many diseases such as NAFLD and comorbidities. More recently, it has been described that cells can secrete miRNAs in extracellular vesicles, transported by body fluids, and uptaken by other tissues regulating gene expression. Therefore, this could be a mechanism of signaling involved not only in physiological pathways but also in the development of diseases. The association of some miRNA expression profiles with certain disorders has made them very interesting molecules for diagnosis, prognosis, and disease management. The finding of specific miRNA signatures to diagnose NAFLD and related diseases could anticipate the risk of development of related complications and, actually, it is the driving force of present health strategies worldwide. In this review, we have included latest advances in knowledge about the miRNAs involved in the development of NAFLD and related diseases and examined how this knowledge could be used to identify new non-invasive biomarkers and new pharmacological interventions.

16.
Antioxidants (Basel) ; 9(7)2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32664383

RESUMO

Nowadays, the obesity pandemic is one of the most relevant health issues worldwide. This condition is tightly related to comorbidities such as non-alcoholic fatty liver disease (NAFLD) and cardiovascular diseases (CVDs), namely atherosclerosis. Dysregulated lipid metabolism and inflammation link these three diseases, leading to a subsequent increase of oxidative stress (OS) causing severe cellular damage. On the other hand, microRNAs (miRNAs) are short, single-stranded, non-coding RNAs that act as post-transcriptional negative regulators of gene expression, thus being involved in the molecular mechanisms that promote the development of many pathologies including obesity and its comorbidities. The involvement of miRNAs in promoting or opposing OS in disease progression is becoming more evident. Some miRNAs, such as miR-200a and miR.421, seem to play important roles in OS control in NAFLD. On the other hand, miR-92a and miR-133, among others, are important in the development of atherosclerosis. Moreover, since both diseases are linked to obesity, they share common altered miRNAs, being miR-34a and miR-21 related to OS. This review summarizes the latest advances in the knowledge about the mechanisms of oxidative stress (OS) generation in obesity-associated NAFLD and atherosclerosis, as well as the role played by miRNAs in the regulation of such mechanisms.

17.
Mol Metab ; 31: 1-13, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31918912

RESUMO

OBJECTIVE: An increase in mass and/or brown adipose tissue (BAT) functionality leads to an increase in energy expenditure, which may be beneficial for the prevention and treatment of obesity. Moreover, distinct class I PI3K isoforms can participate in metabolic control as well as in systemic dysfunctions associated with obesity. In this regard, we analyzed in vivo whether the lack of p85α in BAT (BATp85αKO) could modulate the activity and insulin signaling of this tissue, thereby improving diet-induced obesity and its associated metabolic complications. METHODS: We generated BATp85αKO mice using Cre-LoxP technology, specifically deleting p85α in a conditional manner. To characterize this new mouse model, we used mice of 6 and 12 months of age. In addition, BATp85αKO mice were submitted to a high-fat diet (HFD) to challenge BAT functionality. RESULTS: Our results suggest that the loss of p85α in BAT improves its thermogenic functionality, high-fat diet-induced adiposity and body weight, insulin resistance, and liver steatosis. The potential mechanisms involved in the improvement of obesity include (1) increased insulin signaling and lower activation of JNK in BAT, (2) enhanced insulin receptor isoform B (IRB) expression and association with IRS-1 in BAT, (3) lower production of proinflammatory cytokines by the adipose organ, (4) increased iWAT browning, and (5) improved liver steatosis. CONCLUSIONS: Our results provide new mechanisms involved in the resistance to obesity development, supporting the hypothesis that the gain of BAT activity induced by the lack of p85α has a direct impact on the prevention of diet-induced obesity and its associated metabolic complications.


Assuntos
Tecido Adiposo Marrom/metabolismo , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Obesidade/metabolismo , Animais , Classe Ia de Fosfatidilinositol 3-Quinase/deficiência , Dieta Hiperlipídica/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/induzido quimicamente
18.
J Cell Biochem ; 108(6): 1292-301, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19795387

RESUMO

Insulin receptor substrate-4 (IRS-4) transmits signals from the insulin-like growth factor receptor (IGF-IR) and the insulin receptor (IR) to the PI3K/AKT and the ERK1/2 pathways. IRS-4 expression increases dramatically after partial hepatectomy and plays an important role in HepG2 hepatoblastoma cell line proliferation/differentiation. In human hepatocarcinoma, IRS-4 overexpression has been associated with tumor development. Herein, we describe the mechanism whereby IRS-4 depletion induced by RNA interference (siRNA) sensitizes HepG2 cells to treatment with actinomycin D (Act D) and combined treatment with Act D plus tumor necrosis factor-alpha (TNF-alpha). Similar results have been obtained in HuH 7 and Chang cell lines. Act D therapy drove the cells to a mitochondrial-dependent apoptotic program involving cytochrome c release, caspase 3 activation, PARP fragmentation and DNA laddering. TNF-alpha amplifies the effect of Act D on HepG2 cell apoptosis increasing c-jun N-terminal kinase (JNK) activity, IkappaB-alpha proteolysis and glutathione depletion. IRS-4 depleted cells that were treated with Act D showed an increase in cytochrome c release and procaspase 3 and PARP proteolysis with respect to control cells. The mechanism involved in IRS-4 action is independent of Akt, IkappaB kinase and JNK. IRS-4 down regulation, however, decreased gamma-glutamylcysteine synthetase content and cell glutathione level in the presence of Act D plus TNF-alpha. These results suggest that IRS-4 protects HepG2 cells from oxidative stress induced by drug treatment.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose , Carcinoma Hepatocelular/metabolismo , Dactinomicina/farmacologia , Proteínas Substratos do Receptor de Insulina/antagonistas & inibidores , Neoplasias Hepáticas/metabolismo , Interferência de RNA , Fator de Necrose Tumoral alfa/farmacologia , Humanos , Imuno-Histoquímica , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo
19.
Gastroenterol Hepatol ; 32(7): 489-94, 2009.
Artigo em Espanhol | MEDLINE | ID: mdl-19577341

RESUMO

One of the problems affecting metallic biliary stents is the difficulty of removing them, especially after a period of months or if they have migrated. Several approaches have been used to remove both covered and uncovered stents, although with different degrees of effectiveness. We report two new approaches to removing partially covered stents that migrated proximally and that impacted in the papillary area and distal common bile duct. One stent was removed by papillectomy and the other by using duodenoscopy-guided controlled radial expansion balloon dilation. In both cases, the stents were removed without severe complications for the patient, leaving a good caliber in the stenosis.


Assuntos
Ductos Biliares , Remoção de Dispositivo/métodos , Migração de Corpo Estranho/etiologia , Migração de Corpo Estranho/terapia , Stents/efeitos adversos , Adulto , Ampola Hepatopancreática , Ducto Colédoco , Humanos , Masculino , Pessoa de Meia-Idade
20.
Dis Model Mech ; 12(2)2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30642871

RESUMO

Among the main complications associated with obesity are insulin resistance and altered glucose and lipid metabolism within the liver. It has previously been described that insulin receptor isoform A (IRA) favors glucose uptake and glycogen storage in hepatocytes compared with isoform B (IRB), improving glucose homeostasis in mice lacking liver insulin receptor. Thus, we hypothesized that IRA could also improve glucose and lipid metabolism in a mouse model of high-fat-diet-induced obesity. We addressed the role of insulin receptor isoforms in glucose and lipid metabolism in vivo We expressed IRA or IRB specifically in the liver by using adeno-associated viruses (AAVs) in a mouse model of diet-induced insulin resistance and obesity. IRA, but not IRB, expression induced increased glucose uptake in the liver and muscle, improving insulin tolerance. Regarding lipid metabolism, we found that AAV-mediated IRA expression also ameliorated hepatic steatosis by decreasing the expression of Fasn, Pgc1a, Acaca and Dgat2 and increasing Scd-1 expression. Taken together, our results further unravel the role of insulin receptor isoforms in hepatic glucose and lipid metabolism in an insulin-resistant scenario. Our data strongly suggest that IRA is more efficient than IRB at favoring hepatic glucose uptake, improving insulin tolerance and ameliorating hepatic steatosis. Therefore, we conclude that a gene therapy approach for hepatic IRA expression could be a safe and promising tool for the regulation of hepatic glucose consumption and lipid metabolism, two key processes in the development of non-alcoholic fatty liver disease associated with obesity.This article has an associated First Person interview with the first author of the paper.


Assuntos
Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Glucose/metabolismo , Fígado/metabolismo , Obesidade/metabolismo , Receptor de Insulina/metabolismo , Animais , Dependovirus/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Regulação da Expressão Gênica , Resistência à Insulina , Secreção de Insulina , Metabolismo dos Lipídeos/genética , Masculino , Camundongos Endogâmicos C57BL , Músculos/metabolismo , Especificidade de Órgãos , Isoformas de Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA