Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2021): 20240429, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38628128

RESUMO

The global expansion of Aedes albopictus has stimulated the development of environmentally friendly methods aiming to control disease transmission through the suppression of natural vector populations. Sterile male release programmes are currently being deployed worldwide, and are challenged by the availability of an efficient sex separation which can be achieved mechanically at the pupal stage and/or by artificial intelligence at the adult stage, or through genetic sexing, which allows separating males and females at an early development stage. In this study, we combined the genetic sexing strain previously established based on the linkage of dieldrin resistance to the male locus with a Wolbachia transinfected line. For this, we introduced either the wPip-I or the wPip-IV strain from Culex pipiens in an asymbiotic Wolbachia-free Ae. albopictus line. We then measured the penetrance of cytoplasmic incompatibility and life-history traits of both transinfected lines, selected the wPip-IV line and combined it with the genetic sexing strain. Population suppression experiments demonstrated a 90% reduction in population size and a 50% decrease in hatching rate. Presented results showed that such a combination has a high potential in terms of vector control but also highlighted associated fitness costs, which should be reduced before large-scale field assay.


Assuntos
Aedes , Culex , Wolbachia , Animais , Feminino , Masculino , Wolbachia/genética , Inteligência Artificial , Aedes/genética
2.
J Chem Ecol ; 50(3-4): 143-151, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38366062

RESUMO

Chemical repellents play a crucial role in personal protection, serving as essential elements in reducing the transmission of vector-borne diseases. A biorational perspective that extends beyond the olfactory system as the classical target may be a promising direction to move. The taste system provides reliable information regarding food quality, helping animals to discriminate between nutritious and potentially harmful food sources, often associated with a bitter taste. Understanding how bitter compounds affect feeding in blood-sucking insects could unveil novel molecules with the potential to reduce biting and feeding. Here, we investigated the impact of two naturally occurring bitter compounds, caffeine and quinine, on the feeding decisions in female Aedes aegypti mosquitoes at two distinctive phases: (1) when the mosquito explores the biting substrate using external taste sensors and (2) when the mosquito takes a sip of food and tastes it using internal taste receptors. We assessed the aversiveness of bitter compounds through both an artificial feeding condition (artificial feeder test) and a real host (arm-in-cage test). Our findings revealed different sensitivities in the external and internal sensory pathways responsible for detecting bitter taste in Ae. aegypti. Internal detectors exhibited responsiveness to lower doses compared to the external sensors. Quinine exerted a more pronounced negative impact on biting and feeding activity than caffeine. The implications of our findings are discussed in the context of mosquito food recognition and the potential practical implications for personal protection.


Assuntos
Aedes , Cafeína , Comportamento Alimentar , Quinina , Paladar , Animais , Feminino , Cafeína/farmacologia , Aedes/fisiologia , Comportamento Alimentar/efeitos dos fármacos
3.
J Insect Sci ; 21(6)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34865033

RESUMO

Dispersion expands the distribution of invasive species and as such, it is a key factor of the colonization process. Aedes japonicus japonicus (Theobald, 1901) is an invasive species of mosquito and a vector of various viruses. It was detected in the northeast of France in 2014. The population of this species can expand its distribution by several kilometers per year. However, though flight capacities play an active part in the dispersion of Ae. japonicus, they remain unknown for this species. In this study, we investigated the flight capacities of Ae. japonicus in a laboratory setting using the flight mill technique. We evaluated the influence of age on flight. We recorded videos of individual flights with a camera mounted on Raspberry Pi. We extracted data on distance, duration, and speed of flight using the Toxtrac and Boris software. Our analysis showed a median flight distance of 438 m with a maximum of 11,466 m. Strong flyers, which represented 10% of the females tested, flew more than 6,115 m during 4 h and 28 min at a speed of 1.7 km per h. As suspected, Ae. japonicus is a stronger flyer than the other invasive species Aedes albopictus (Skuse, 1894) (Diptera: Culicidae). To our knowledge, this is the first flight mill study conducted on Ae. japonicus and therefore the first evaluation of its flight capacity. In the future, the flight propensity of Ae. japonicus determined in this study can be included as a parameter to model the colonization process of this invasive vector species.


Assuntos
Aedes , Voo Animal , Distribuição Animal , Animais , Feminino , França , Espécies Introduzidas , Mosquitos Vetores
4.
Insects ; 14(7)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37504636

RESUMO

The mass production of mosquitoes at an industrial scale requires efficient sex separation, which can be achieved through mechanical, genetic or artificial intelligence means. Compared with other methods, the genetic sexing approach offers the advantage of limiting costs and space by removing females at the larval stage. We recently developed a Genetic Sexing Strain (GSS) in Aedes albopictus based on the sex linkage of the rdlR allele, conferring resistance to dieldrin, to the male (M) locus. It has been previously reported that dieldrin ingested by larvae can be detected in adults and bioaccumulated in predators, raising the question of its use at a large scale. In this context, we performed several experiments aiming at optimizing dieldrin selection by decreasing both dieldrin concentration and exposure time while maintaining a stable percentage of contaminating females averaging 1%. We showed that the previously used dieldrin exposure induced an important toxicity as it killed 60% of resistant males at the larval stage. We lowered this toxicity by reducing the dose and/or the exposure time to recover nearly all resistant males. We then quantified the residues of dieldrin in resistant male adults and showed that dieldrin toxicity in larvae was positively correlated with dieldrin concentrations detected in adults. Interestingly, we showed that the use of reduced dieldrin exposure led to a dieldrin quantification in adult males that was below the quantity threshold of the Gas Chromatography-Mass Spectrometry detection method. Presented data show that dieldrin exposure can be adjusted to suppress toxicity in males while achieving efficient sexing and lowering the levels of dieldrin residues in adults to barely quantifiable levels.

5.
J Med Entomol ; 60(4): 828-832, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37134310

RESUMO

The production of mosquitoes for control programs or basic research is facilitated by the standardization of rearing conditions allowing the daily manipulation of thousands of individuals. It is crucial to develop mechanical or electronic systems for controlling the density of mosquitoes at each development stage with the aim of reducing costs, time, and human errors. We present herein an automatic mosquito counter using a recirculating water system allowing rapid and reliable counting of pupae without detectable increased mortality. Using Aedes albopictus pupae, we determined the density of pupae and the time of counting for which the device is most accurate, and evaluated the time saved using this device. Lastly, we discuss how this mosquito pupae counter can be useful in small-scale or mass-rearing contexts enabling a number of applications for research purposes as well as operational mosquito control programs.


Assuntos
Aedes , Humanos , Animais , Pupa , Controle de Mosquitos , Água , Mosquitos Vetores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA