RESUMO
Self-stratification of model blends of colloidal spheres has recently been demonstrated as a method to form multifunctional coatings in a single pass. However, practical coating formulations are complex fluids with upward of 15 components. Here, we investigate the influence of three different rheology modifiers (RMs) on the stratification of a 10 wt % 7:3 w:w blend of 270 and 96 nm anionic latex particles that do not stratify without RM. However, addition of a high molar mass polysaccharide thickener, xanthan gum, raises the viscosity and corresponding Péclet number enough to achieve small-on-top stratification as demonstrated by atomic force microscopy (AFM) measurements. Importantly, this was possible due to minimal particle-rheology modifier interactions, as demonstrated by the bulk rheology. In contrast, Carbopol 940, a microgel-based RM, was unable to achieve small-on-top stratification despite a comparable increase in viscosity. Instead, pH-dependent interactions with latex particles lead to either laterally segregated structures at pH 3 or a surface enrichment of large particles at pH 8. Strong RM-particle interactions are also observed when the triblock associative RM HEUR10kC12 is used. Here, small-on-top, large-enhanced, and randomly mixed structures were observed at respectively 0.01, 0.1, and 1 wt % HEUR10kC12. Combining rheology, dynamic light scattering, and AFM results allows the mechanisms behind the nonmonotonic stratification in the presence of associative RMs to be elucidated. Our results highlight that stratification can be predicted and controlled for RMs with weak particle interactions, while a strong RM-particle interaction may afford a wider range of stratified structures. This takes a step toward successfully harnessing stratification in coatings formulations.
RESUMO
In the current contribution it is demonstrated - for the first time - that poly(ethylene) (M(n) = 1,400 as well as 2,800 g · mol(-1) , PDI = 1.2) can be readily equipped with highly reactive cyclopentadienyl (Cp) end groups. The Cp terminal poly(ethylene) can subsequently be reacted in an efficient hetero Diels-Alder (HDA) reaction with macromolecules (poly(isobornyl acrylate) (M(n) = 4,600 g · mol(-1) , PDI = 1.10) and poly(styrene) (M(n) = 6,300 g · mol(-1) , PDI = 1.13) featuring strongly electron withdrawing thiocarbonyl thio end groups, prepared via reversible addition fragmentation chain transfer (RAFT) polymerization employing benzylpyridin-2-yldithioformate (BPDF) as transfer agent. The resulting block copolymers have been analyzed via high-temperature size exclusion chromatography (SEC) as well as nuclear magnetic resonance (NMR) spectroscopy. The current system allows for the removal of the excess of the non-poly(ethylene) containing segment via filtration of the poly(ethylene)-containing block copolymer. However, the reaction temperatures need to be judiciously selected. Characterization of the generated block copolymers at elevated temperatures can lead - depending on the block copolymer type - to the occurrence of retro Diels-Alder processes. The present study thus demonstrates that RAFT-HDA ligation can be effectively employed for the generation of block copolymers containing poly(ethylene) segments.
Assuntos
Polietileno/química , Polímeros/síntese química , Fenômenos Químicos , Estrutura Molecular , Polimerização , Polímeros/químicaRESUMO
An α-[Cu(II)-porphyrin]-polyethylene was synthesized for the first time using copper catalyzed 1,3-dipolar azide-alkyne Huisgen cycloaddition yielding highly colored moiety-substituted polyethylene.