Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Ecol Lett ; 27(8): e14478, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39092581

RESUMO

Quantifying how global change impacts wild populations remains challenging, especially for species poorly represented by systematic datasets. Here, we infer climate change effects on masting by Joshua trees (Yucca brevifolia and Y. jaegeriana), keystone perennials of the Mojave Desert, from 15 years of crowdsourced observations. We annotated phenophase in 10,212 geo-referenced images of Joshua trees on the iNaturalist crowdsourcing platform, and used them to train machine learning models predicting flowering from annual weather records. Hindcasting to 1900 with a trained model successfully recovers flowering events in independent historical records and reveals a slightly rising frequency of conditions supporting flowering since the early 20th Century. This reflects increased variation in annual precipitation, which drives masting events in wet years-but also increasing temperatures and drought stress, which may have net negative impacts on recruitment. Our findings reaffirm the value of crowdsourcing for understanding climate change impacts on biodiversity.


Assuntos
Mudança Climática , Flores , Flores/crescimento & desenvolvimento , Árvores , Aprendizado de Máquina , Secas
2.
J Zoo Wildl Med ; 53(2): 412-423, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35758583

RESUMO

Noninvasive methods for measuring fat reserves in both captive and free-ranging animals are important for monitoring individual and population health, but chelonian anatomy and physiology present challenges to accurate measurements. Standard field-based methods for assessing body condition in Mojave desert tortoises (Gopherus agassizii) involve the qualitative body condition score, which relies on the apparent height of the temporalis muscle relative to the sagittal crest (in addition to other characteristics) and quantitative body condition indices that measure relative mass at size. However, it is unclear how these metrics relate to body fat reserves in this species. The aims of this study were to (1) describe the use of noninvasive computed tomography in measuring body fat volume of Mojave desert tortoises, (2) describe the location of fat reserves, (3) investigate relationships between fat reserves and body condition score and body condition index, and (4) explore whether relative temporalis muscle depth, measured via computed tomography, correlates with body condition score. Body condition scores were assessed for eight captive Mojave desert tortoises prior to euthanasia, and computed tomography was performed postmortem to quantify fat volume and measure temporalis muscle depth. At necropsy, the distribution of fat was documented. Fat volume calculated by computed tomography ranged from 2.83 to 145.38 cm3 (0.07-2.5% body volume). Neither qualitative body condition score nor quantitative body condition index was correlated with fat volume. Bladder content did not compromise body condition index. Body condition score was not correlated with relative temporalis muscle depth. Computed tomography is a noninvasive method for successfully identifying fat reserves and estimating total fat volume in Mojave desert tortoises. The lack of a relationship between computed tomography-determined metrics and commonly used body condition metrics indicates that computed tomography fills a critical gap in the health assessment tool kit for captive and free-ranging Mojave desert tortoises.


Assuntos
Tartarugas , Tecido Adiposo/diagnóstico por imagem , Animais , Tomografia , Tartarugas/fisiologia
3.
Mol Ecol ; 30(3): 698-717, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33007116

RESUMO

Local adaptation features critically in shaping species responses to changing environments, complicating efforts to revegetate degraded areas. Rapid climate change poses an additional challenge that could reduce fitness of even locally sourced seeds in restoration. Predictive restoration strategies that apply seeds with favourable adaptations to future climate may promote long-term resilience. Landscape genomics is increasingly used to assess spatial patterns in local adaption and may represent a cost-efficient approach for identifying future-adapted genotypes. To demonstrate such an approach, we genotyped 760 plants from 64 Mojave Desert populations of the desert annual Plantago ovata. Genome scans on 5,960 SNPs identified 184 potentially adaptive loci related to climate and satellite vegetation metrics. Causal modelling indicated that variation in potentially adaptive loci was not confounded by isolation by distance or isolation by habitat resistance. A generalized dissimilarity model (GDM) attributed spatial turnover in potentially adaptive loci to temperature, precipitation and NDVI amplitude, a measure of vegetation green-up potential. By integrating a species distribution model (SDM), we find evidence that summer maximum temperature may both constrain the range of P. ovata and drive adaptive divergence in populations exposed to higher temperatures. Within the species' current range, warm-adapted genotypes are predicted to experience a fivefold expansion in climate niche by midcentury and could harbour key adaptations to cope with future climate. We recommend eight seed transfer zones and project each zone into its relative position in future climate. Prioritizing seed collection efforts on genotypes with expanding future habitat represents a promising strategy for restoration practitioners to address rapidly changing climates.


Assuntos
Mudança Climática , Genômica , Adaptação Fisiológica , Ecossistema , Genótipo
4.
Sensors (Basel) ; 19(12)2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31200500

RESUMO

Daytime and nighttime thermal infrared observations acquired by the ASTER and MODIS instruments onboard the NASA Terra spacecraft have produced a dataset that can be used to map thermophysical properties across large regions, which have implications on surface processes, thermal environments and habitat suitability for desert species. ASTER scenes acquired between 2004 and 2012 are combined using new mosaicking and data-fusion techniques to produce a map of daytime and nighttime land surface temperature with coverage exclusive of the effects of clouds and weather. These data are combined with Landsat 7 visible imagery to generate a consistent map of apparent thermal inertia (ATI), which is related to the presence of exposed bedrock, rocks, fine-grained sediments and water on the surface. The resulting datasets are compared to known geomorphic units and surface types to generate an interpreted mechanical composition map of the entire Mojave Desert at 100 m per pixel that is most sensitive to large clast size distinctions in grain size distribution.

5.
Ecol Appl ; 27(2): 429-445, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28135767

RESUMO

Restoring dryland ecosystems is a global challenge due to synergistic drivers of disturbance coupled with unpredictable environmental conditions. Dryland plant species have evolved complex life-history strategies to cope with fluctuating resources and climatic extremes. Although rarely quantified, local adaptation is likely widespread among these species and potentially influences restoration outcomes. The common practice of reintroducing propagules to restore dryland ecosystems, often across large spatial scales, compels evaluation of adaptive divergence within these species. Such evaluations are critical to understanding the consequences of large-scale manipulation of gene flow and to predicting success of restoration efforts. However, genetic information for species of interest can be difficult and expensive to obtain through traditional common garden experiments. Recent advances in landscape genetics offer marker-based approaches for identifying environmental drivers of adaptive genetic variability in non-model species, but tools are still needed to link these approaches with practical aspects of ecological restoration. Here, we combine spatially explicit landscape genetics models with flexible visualization tools to demonstrate how cost-effective evaluations of adaptive genetic divergence can facilitate implementation of different seed sourcing strategies in ecological restoration. We apply these methods to Amplified Fragment Length Polymorphism (AFLP) markers genotyped in two Mojave Desert shrub species of high restoration importance: the long-lived, wind-pollinated gymnosperm Ephedra nevadensis, and the short-lived, insect-pollinated angiosperm Sphaeralcea ambigua. Mean annual temperature was identified as an important driver of adaptive genetic divergence for both species. Ephedra showed stronger adaptive divergence with respect to precipitation variability, while temperature variability and precipitation averages explained a larger fraction of adaptive divergence in Sphaeralcea. We describe multivariate statistical approaches for interpolating spatial patterns of adaptive divergence while accounting for potential bias due to neutral genetic structure. Through a spatial bootstrapping procedure, we also visualize patterns in the magnitude of model uncertainty. Finally, we introduce an interactive, distance-based mapping approach that explicitly links marker-based models of adaptive divergence with local or admixture seed sourcing strategies, promoting effective native plant restoration.


Assuntos
Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Conservação dos Recursos Naturais/métodos , Ephedra/genética , Genoma de Planta , Malvaceae/genética , California , Conservação dos Recursos Naturais/economia , Nevada
6.
J Environ Manage ; 193: 448-457, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28238545

RESUMO

Public land policies manage multiple uses while striving to protect vulnerable plant and wildlife habitats from degradation; yet the effectiveness of such policies are infrequently evaluated, particularly for remote landscapes that are difficult to monitor. We assessed the use and impacts of recreational vehicles on Mojave Desert washes (intermittent streams) in the Chemehuevi Desert Wildlife Management Area (DWMA) of southern California. Wash zones designated as open and closed to off-highway vehicle (OHV) activity were designed in part to protect Mojave desert tortoise (Gopherus agassizii) habitat while allowing recreation in designated areas. OHV tracks were monitored in washes located near access roads during winter and early spring holidays - when recreation is typically high - and at randomly dispersed locations away from roads. Washes near access roads had fewer vehicle tracks within closed than open zones; further away from roads, OHV tracks were infrequent and their occurrence was not different between wash designations. Washes were in better condition in closed zones following major holidays as indicated by less vegetation damage, presence of trash, and wash bank damage. Furthermore, the frequency of washes with live tortoises and their sign was marginally greater in closed than open wash zones. Collectively, these results suggest that low impacts to habitats in designated closed wash zones reflect public compliance with federal OHV policy and regulations in the Chemehuevi DWMA during our study. Future monitoring to contrast wash use and impacts during other seasons as well as in other DWMAs will elucidate spatial and temporal patterns of recreation in these important conservation areas.


Assuntos
Ecossistema , Tartarugas , Animais , California , Clima Desértico , Recreação , Estações do Ano
7.
J Raptor Res ; 51(3): 234-257, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30220786

RESUMO

Spatial demographic models can help guide monitoring and management activities targeting at-risk species, even in cases where baseline data are lacking. Here, we provide an example of how site-specific changes in land-use and other anthropogenic stressors can be incorporated into a spatial demographic model to investigate effects on population dynamics of Golden Eagles (Aquila chrysaetos). Our study focused on a population of Golden Eagles exposed to risks associated with rapid increases in renewable energy development in southern California, USA. We developed a spatially-explicit, individual-based simulation model that integrated empirical data on demography of Golden Eagles with spatial data on the arrangement of nesting habitats, prey resources, and planned renewable energy development sites. Our model permitted simulated eagles of different stage-classes to disperse, establish home ranges, acquire resources, prospect for breeding sites, and reproduce. The distribution of nesting habitats, prey resources, and threats within each individual's home range influenced movement, reproduction, and survival. We used our model to explore potential effects of alternative disturbance scenarios, and proposed conservation strategies, on the future distribution and abundance of Golden Eagles in the study region. Results from our simulations suggest that probable increases in mortality associated with renewable energy infrastructure (e.g., collisions with wind-turbines and vehicles, electrocution on power poles) could have negative consequences for population trajectories, but that site-specific conservation actions could reduce the magnitude of negative impacts. Our study demonstrates the use of a flexible and expandable modeling framework to incorporate spatially dependent processes when determining relative risks of proposed management options to Golden Eagles and their habitats.

8.
Ecol Appl ; 26(4): 1223-37, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27509760

RESUMO

Conservation planning and biodiversity management require information on landscape connectivity across a range of spatial scales from individual home ranges to large regions. Reduction in landscape connectivity due changes in land use or development is expected to act synergistically with alterations to habitat mosaic configuration arising from climate change. We illustrate a multiscale connectivity framework to aid habitat conservation prioritization in the context of changing land use and climate. Our approach, which builds upon the strengths of multiple landscape connectivity methods, including graph theory, circuit theory, and least-cost path analysis, is here applied to the conservation planning requirements of the Mohave ground squirrel. The distribution of this threatened Californian species, as for numerous other desert species, overlaps with the proposed placement of several utility-scale renewable energy developments in the American southwest. Our approach uses information derived at three spatial scales to forecast potential changes in habitat connectivity under various scenarios of energy development and climate change. By disentangling the potential effects of habitat loss and fragmentation across multiple scales, we identify priority conservation areas for both core habitat and critical corridor or stepping stone habitats. This approach is a first step toward applying graph theory to analyze habitat connectivity for species with continuously distributed habitat and should be applicable across a broad range of taxa.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Monitoramento Ambiental , Modelos Biológicos , Sciuridae/fisiologia , Animais , Clima Desértico , Ecossistema , Política Ambiental , Plantas/classificação , Estados Unidos
9.
J Anim Ecol ; 85(3): 829-42, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26935482

RESUMO

Most directly transmitted infections require some form of close contact between infectious and susceptible hosts to spread. Often disease models assume contacts are equal and use mean field estimates of transmission probability for all interactions with infectious hosts. Such methods may inaccurately describe transmission when interactions differ substantially in their ability to cause infection. Understanding this variation in transmission risk may be critical to properly model and manage some infectious diseases. In this study, we investigate how varying exposure and transmission may be key to understanding disease dynamics in the threatened desert tortoise Gopherus agassizii. We created heterogeneity in Mycoplasma agassizii exposure (the putative bacterial agent of a respiratory disease) by varying the duration of interactions between naturally infected and uninfected captive desert tortoises. Using qPCR, we identified new infections and compared models of transmission probability as a function of contact duration and pathogen load. We then examined the contact patterns of a wild tortoise population using proximity loggers to identify heterogeneity in contact duration. The top-ranked model predicting M. agassizii transmission included a dose term defined as the product of the number of days in proximity to an infected host and the infection level of that host. Models predicted low transmission probability for short interactions, unless the infectious host had a high load of M. agassizii: such hosts were predicted to transmit infection at higher rates with any amount of contact. We observed predominantly short-lived interactions in a free-ranging tortoise population and thus, expect transmission patterns in this population to vary considerably with the frequency and duration of high infection levels. Mean field models may misrepresent natural transmission patterns in this and other populations depending on the distribution of high-risk contact and shedding events. Rapid outbreaks in generally solitary species may result from changes to their naturally low-risk contact patterns or due to increases in the frequency of severe infections or super-shedding events - population characteristics that should be further investigated to develop effective management strategies.


Assuntos
Infecções por Mycoplasma/transmissão , Infecções Respiratórias/microbiologia , Infecções Respiratórias/transmissão , Tartarugas/microbiologia , Animais , Surtos de Doenças/veterinária , Espécies em Perigo de Extinção , Feminino , Masculino , Mycoplasma/isolamento & purificação , Mycoplasma/fisiologia , Infecções por Mycoplasma/patologia , Infecções por Mycoplasma/veterinária , Infecções Respiratórias/patologia , Infecções Respiratórias/veterinária
10.
Am J Bot ; 102(1): 85-91, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25587151

RESUMO

UNLABELLED: • PREMISE OF STUDY: Accurate demographic information about long-lived plant species is important for understanding responses to large-scale disturbances, including climate change. It is challenging to obtain these data from desert perennial plants because seedling establishment is exceptionally rare, and estimates of survival are lacking for their vulnerable early stages. Desert wildfires, urbanization, and climate change influence the persistence of the long-lived Yucca brevifolia. Quantitative demographic attributes are crucial for understanding how populations will respond to disturbances and where populations will recede or advance under future climate scenarios.• METHODS: We measured survival in a cohort of 53 pre-reproductive Y. brevifolia at Yucca Flat, Nevada, USA, for 22 yr and recorded their growth, nurse-plant relationships, and herbivory.• KEY RESULTS: Herbivory by black-tailed jackrabbits (Lepus californicus) caused severe losses of plants during the first and second years (45% and 31%, respectively). Surviving plants experienced <2.5% annual mortality. Survival for the population was 19% over 22 yr. Plants <25 cm in height had lower life expectancy. Average growth rate (± SD) for plants that survived to the last census was 3.12 ± 1.96 cm yr(-1), and growth rates were positively associated with precipitation. Thirty-year-old Y. brevifolia had not yet reproduced.• CONCLUSIONS: A rare establishment event for Y. brevifolia during 1983-1984, triggered by above-average summer rainfall, provided a unique opportunity to track early survival and growth. Infrequent but acute episodes of herbivory during drought influenced demography for decades. Variability in survival among young Y. brevifolia indicates that size-dependent demographic variables will improve forecasts for this long-lived desert species under predicted regional climate change.


Assuntos
Meio Ambiente , Yucca/fisiologia , Mudança Climática , Chuva , Reprodução , Estações do Ano , Yucca/crescimento & desenvolvimento
11.
Am J Bot ; 101(11): 1944-53, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25366859

RESUMO

PREMISE OF THE STUDY: A key question concerns the vulnerability of desert species adapted to harsh, variable climates to future climate change. Evaluating this requires coupling long-term demographic models with information on past and projected future climates. We investigated climatic drivers of population growth using a 22-yr demographic model for Pediocactus bradyi, an endangered cactus in northern Arizona. METHODS: We used a matrix model to calculate stochastic population growth rates (λs) and the relative influences of life-cycle transitions on population growth. Regression models linked population growth with climatic variability, while stochastic simulations were used to (1) understand how predicted increases in drought frequency and extreme precipitation would affect λs, and (2) quantify variability in λs based on temporal replication of data. KEY RESULTS: Overall λs was below unity (0.961). Population growth was equally influenced by fecundity and survival and significantly correlated with increased annual precipitation and higher winter temperatures. Stochastic simulations increasing the probability of drought and extreme precipitation reduced λs, but less than simulations increasing the probability of drought alone. Simulations varying the temporal replication of data suggested 14 yr were required for accurate λs estimates. CONCLUSIONS: Pediocactus bradyi may be vulnerable to increases in the frequency and intensity of extreme climatic events, particularly drought. Biotic interactions resulting in low survival during drought years outweighed increased seedling establishment following heavy precipitation. Climatic extremes beyond historical ranges of variability may threaten rare desert species with low population growth rates and therefore high susceptibility to stochastic events.


Assuntos
Cactaceae/crescimento & desenvolvimento , Arizona , Cactaceae/fisiologia , Mudança Climática , Demografia , Secas , Estações do Ano
12.
PLoS One ; 18(9): e0286820, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37768995

RESUMO

Roadways and railways can reduce wildlife movements across landscapes, negatively impacting population connectivity. Connectivity may be improved by structures that allow safe passage across linear barriers, but connectivity could be adversely influenced by low population densities. The Mojave desert tortoise is threatened by habitat loss, fragmentation, and population declines. The tortoise continues to decline as disturbance increases across the Mojave Desert in the southwestern United States. While underground crossing structures, like hydrological culverts, have begun receiving attention, population density has not been considered in tortoise connectivity. Our work asks a novel question: How do culverts and population density affect connectivity and potentially drive genetic and demographic patterns? To explore the role of culverts and population density, we used agent-based spatially explicit forward-in-time simulations of gene flow. We constructed resistance surfaces with a range of barriers to movement and representative of tortoise habitat with anthropogenic disturbance. We predicted connectivity under variable population densities. Simulations were run for 200 non-overlapping generations (3400 years) with 30 replicates using 20 microsatellite loci. We evaluated population genetic structure and diversity and found that culverts would not entirely negate the effects of linear barriers, but gene flow improved. Our results also indicated that density is important for connectivity. Low densities resulted in declines regardless of the landscape barrier scenario (> 75% population census size, > 97% effective population size). Results from our simulation using current anthropogenic disturbance predicted decreased population connectivity over time. Genetic and demographic effects were detectable within five generations (85 years) following disturbance with estimated losses in effective population size of 69%. The pronounced declines in effective population size indicate this could be a useful monitoring metric. We suggest management strategies that improve connectivity, such as roadside fencing tied to culverts, conservation areas in a connected network, and development restricted to disturbed areas.

13.
Sci Rep ; 13(1): 14818, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684318

RESUMO

The threatened Mojave desert tortoise (Gopherus agassizii) exhibits temperature-dependent sex determination, and individuals appear externally sexually monomorphic until sexual maturity. A non-surgical sex identification method that is suitable for a single in situ encounter with hatchlings is essential for minimizing handling of wild animals. We tested (1) whether plasma testosterone quantified by enzyme-linked immunosorbent assay differentiated males from females in 0-3 month old captive hatchlings, and (2) whether an injection of follicle-stimulating hormone (FSH) differentially elevates testosterone in male hatchlings to aid in identifying sex. We validated sex by ceolioscopic (laparoscopic) surgery. We then fit the testosterone concentrations to lognormal distributions and identified the concentration below which individuals are more likely female, and above which individuals are more likely male. Using a parametric bootstrapping procedure, we estimated a 0.01-0.04% misidentification rate for naïve testosterone samples, and a 1.26-1.39% misidentification rate for challenged (post-FSH injection) testosterone samples. Quantification of plasma testosterone concentration from small volume (0.1 mL) blood samples appears to be a viable, highly accurate method to identify sex of 0-3 month old hatchlings and could be a valuable tool for conservation measures and investigation of trends and variation in sex ratios for in situ wild nests.


Assuntos
Testosterona , Tartarugas , Feminino , Masculino , Animais , Animais Selvagens , Ensaio de Imunoadsorção Enzimática , Hormônio Foliculoestimulante Humano
14.
Am J Bot ; 99(10): 1647-54, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23028005

RESUMO

PREMISE OF THE STUDY: The future of long-lived stand-forming desert plants such as Yucca brevifolia (Joshua tree) has come into question in light of climate variation and landscape-scale disturbances such as wildfire. Understanding plant establishment dynamics is important for mitigating the impacts of disturbances and promoting revegetation. • METHODS: We placed Y. brevifolia seeds in shallow caches and manipulated granivore access, nurse shrub effects, and the season of cache placement to determine conditions for seed germination and seedling establishment. • KEY RESULTS: Greatest seedling emergence occurred during spring and summer, when increased soil moisture was accompanied by warm soil temperatures. Late winter-spring emergence for cached seeds was enhanced beneath shrub canopies, but seedling survival declined beneath shrubs as temperatures increased in spring. Germinability of seed remaining in the soil was reduced from 50-68% after 12 mo residence time in soil and declined to <3% after 40 mo. Following dispersal from parent plants, seeds are either removed by granivores or lose germinability, imposing substantial losses of potential germinants. • CONCLUSIONS: Specific germination and establishment requirements impose stringent limits on recruitment rates for Y. brevifolia. Coupled with infrequent seed availability, the return rates to prefire densities and demographic structure may require decades to centuries, especially in light of potential changes to regional desert climate in combination with the potential for fire recurrence. Demographic patterns are predicted to vary spatially in response to environmental variability that limits recruitment and may already be apparent among extant populations.


Assuntos
Germinação/fisiologia , Sementes/crescimento & desenvolvimento , Yucca/fisiologia , Ecossistema , Estimativa de Kaplan-Meier , Nevada , Chuva , Estações do Ano , Plântula/crescimento & desenvolvimento , Solo , Temperatura
15.
Ecol Evol ; 12(4): e8805, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35432931

RESUMO

The combination of ecosystem stressors, rapid climate change, and increasing landscape-scale development has necessitated active restoration across large tracts of disturbed habitats in the arid southwestern United States. In this context, programmatic directives such as the National Seed Strategy for Rehabilitation and Restoration have increasingly emphasized improved restoration practices that promote resilient, diverse plant communities, and enhance native seed reserves. While decision-support tools have been implemented to support genetic diversity by guiding seed transfer decisions based on patterns in local adaptation, less emphasis has been placed on identifying priority seed mixes composed of native species assemblages. Well-designed seed mixes can provide foundational ecosystem services including resilience to disturbance, resistance to invasive species, plant canopy structure to facilitate natural seedling recruitment, and habitat to support wildlife and pollinator communities. Drawing from a newly developed dataset of species distribution models for priority native plant taxa in the Mojave Desert, we created a novel decision support tool by pairing spatial predictions of species habitat with a database of key species traits including life history, flowering characteristics, pollinator relationships, and propagation methods. This publicly available web application, Mojave Seed Menus, helps restoration practitioners generate customized seed mixes for native plant restoration in the Mojave Desert based on project locations. Our application forms part of an integrated Mojave Desert restoration program designed to help practitioners identify species to include in local seed mixes and nursery stock development while accounting for local adaptation by identifying appropriate seed source locations from key restoration species.

16.
Vector Borne Zoonotic Dis ; 21(8): 635-637, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34143676

RESUMO

Ticks transmit pathogens and parasitize wildlife in turn causing zoonotic diseases in many ecosystems. Argasid ticks, such as Ornithodoros spp., harbor and transmit Borrelia spp., resulting in tick-borne relapsing fever (TBRF) in people. In the western United States, TBRF is typically associated with the bite of an infected Ornithodoros hermsi tick found in habitats at high elevations (>1500 ft). This report describes the first TBRF cases in people in the Mojave Desert (Clark County, NV). Individuals documented in these case studies were exposed to Ornithodoros ticks during excavation of soil burrows associated with Mojave Desert tortoises (Gopherus agassizii), with bacteria from one of the human case's blood sample genetically matching to Borrelia turicatae as determined by quantitative PCR and sequencing. Our findings should serve as a precaution to individuals working with tortoises or animal burrows, or those in contact with Ornithodoros ticks in this region.


Assuntos
Infecções por Borrelia , Borrelia , Ornithodoros , Febre Recorrente , Tartarugas , Animais , Borrelia/genética , Infecções por Borrelia/veterinária , Ecossistema , Febre Recorrente/veterinária
17.
J Wildl Dis ; 57(3): 579-589, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34019673

RESUMO

The Mojave Desert tortoise (Gopherus agassizii), federally listed as threatened, has suffered habitat loss and fragmentation due to human activities. Upper respiratory tract disease (URTD), a documented health threat to desert tortoises, has been detected at the Large-Scale Translocation Study Site (LSTS) in southwestern Nevada, US, a fenced recipient site for translocated animals. Our study aimed to 1) estimate prevalence of URTD and Mycoplasma infection at LSTS and three nearby unfenced sites; 2) assess whether Mycoplasma infection status was associated with developing clinical signs of URTD; and 3) determine whether such an association differed between LSTS and unfenced areas. We sampled 421 tortoises in 2016 to describe the current status of these populations. We evaluated three clinical signs of URTD (nasal discharge, ocular discharge, nasal erosions) and determined individual infection status for Mycoplasma agassizii and Mycoplasma testudineum by quantitative PCR and enzyme-linked immunosorbent assay. In 2016, LSTS had the highest prevalence of M. agassizii (25.0%; 33/132), M. testudineum (3.0%; 4/132), and URTD clinical signs (18.9%; 25/132). Controlling for other factors, clinical sign(s) were positively associated with M. agassizii infection (odds ratio [OR]=7.7, P=0.001), and this effect was similar among study sites (P>0.99). There was no association with M. testudineum status (P=0.360). Of the 196 tortoises in a longitudinal comparison of 2011-14 with 2016, an estimated 3.2% converted from M. agassizii-negative to positive during the study period, and incidence was greater at LSTS (P=0.002). Conversion to positive M. agassizii status was associated with increased incidence of clinical signs in subsequent years (OR=11.1, P=0.018). While M. agassizii and URTD are present outside the LSTS, there is a possibility that incidence of Mycoplasma infection and URTD would increase outside LSTS if these populations were to reconnect. Population-level significance of this risk appears low, and any risk must be evaluated against the potential long-term benefits to population viability through increased connectivity.


Assuntos
Infecções por Mycoplasma , Mycoplasma , Tartarugas , Animais , Anticorpos Antibacterianos , Infecções por Mycoplasma/epidemiologia , Infecções por Mycoplasma/veterinária
18.
Ecol Evol ; 11(12): 7905-7916, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34188860

RESUMO

A central theme for conservation is understanding how animals differentially use, and are affected by change in, the landscapes they inhabit. However, it has been challenging to develop conservation schemes for habitat-specific behaviors.Here we use behavioral change point analysis to identify behavioral states of golden eagles (Aquila chrysaetos) in the Sonoran and Mojave Deserts of the southwestern United States, and we identify, for each behavioral state, conservation-relevant habitat associations.We modeled behavior using 186,859 GPS points from 48 eagles and identified 2,851 distinct segments comprising four behavioral states. Altitude above ground level (AGL) best differentiated behavioral states, with two clusters of short-distance movement behaviors characterized by low AGL (state 1 AGL = 14 m (median); state 2 AGL = 11 m) and two associated with longer-distance movement behaviors and characterized by higher AGL (state 3 AGL = 108 m; state 4 AGL = 450 m).Behaviors such as perching and low-altitude hunting were associated with short-distance movements in updraft-poor environments, at higher elevations, and over steeper and more north-facing terrain. In contrast, medium-distance movements such as hunting and transiting were over gentle and south-facing slopes. Long-distance transiting occurred over the desert habitats that generate the best updraft.This information can guide management of this species, and our approach provides a template for behavior-specific habitat associations for other species of management concern.

19.
Oecologia ; 164(1): 253-63, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20419316

RESUMO

Post-fire changes in desert vegetation patterns are known, but the mechanisms are poorly understood. Theory suggests that pulse dynamics of resource availability confer advantages to invasive annual species, and that pulse timing can influence survival and competition among species. Precipitation patterns in the American Southwest are predicted to shift toward a drier climate, potentially altering post-fire resource availability and consequent vegetation dynamics. We quantified post-fire inorganic N dynamics and determined how annual plants respond to soil inorganic nitrogen variability following experimental fires in a Mojave Desert shrub community. Soil inorganic N, soil net N mineralization, and production of annual plants were measured beneath shrubs and in interspaces during 6 months following fire. Soil inorganic N pools in burned plots were up to 1 g m(-2) greater than unburned plots for several weeks and increased under shrubs (0.5-1.0 g m(-2)) more than interspaces (0.1-0.2 g m(-2)). Soil NO(3) (-)-N (nitrate-N) increased more and persisted longer than soil NH(4) (+)-N (ammonium-N). Laboratory incubations simulating low soil moisture conditions, and consistent with field moisture during the study, suggest that soil net ammonification and net nitrification were low and mostly unaffected by shrub canopy or burning. After late season rains, and where soil inorganic N pools were elevated after fire, productivity of the predominant invasive Schismus spp. increased and native annuals declined. Results suggest that increased N availability following wildfire can favor invasive annuals over natives. Whether the short-term success of invasive species following fire will direct long-term species composition changes remains to be seen, yet predicted changes in precipitation variability will likely interact with N cycling to affect invasive annual plant dominance following wildfire.


Assuntos
Clima Desértico , Ecossistema , Incêndios , Nitrogênio/análise , Solo/análise , Ambrosia/crescimento & desenvolvimento , Arizona , Espécies Introduzidas , Larrea/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Poaceae
20.
PLoS One ; 15(8): e0238202, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32846428

RESUMO

The immune system of ectotherms, particularly non-avian reptiles, remains poorly characterized regarding the genes involved in immune function, and their function in wild populations. We used RNA-Seq to explore the systemic response of Mojave desert tortoise (Gopherus agassizii) gene expression to three levels of Mycoplasma infection to better understand the host response to this bacterial pathogen. We found over an order of magnitude more genes differentially expressed between male and female tortoises (1,037 genes) than differentially expressed among immune groups (40 genes). There were 8 genes differentially expressed among both variables that can be considered sex-biased immune genes in this tortoise. Among experimental immune groups we find enriched GO biological processes for cysteine catabolism, regulation of type 1 interferon production, and regulation of cytokine production involved in immune response. Sex-biased transcription involves iron ion transport, iron ion homeostasis, and regulation of interferon-beta production to be enriched. More detailed work is needed to assess the seasonal response of the candidate genes found here. How seasonal fluctuation of testosterone and corticosterone modulate the immunosuppression of males and their susceptibility to Mycoplasma infection also warrants further investigation, as well as the importance of iron in the immune function and sex-biased differences of this species. Finally, future transcriptional studies should avoid drawing blood from tortoises via subcarapacial venipuncture as the variable aspiration of lymphatic fluid will confound the differential expression of genes.


Assuntos
Infecções por Mycoplasma/imunologia , Infecções por Mycoplasma/veterinária , Mycoplasma/imunologia , Tartarugas/genética , Tartarugas/imunologia , Animais , Anticorpos Antibacterianos/sangue , California , Citocinas/genética , Citocinas/imunologia , Clima Desértico , Feminino , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Transporte de Íons/genética , Ferro/metabolismo , Masculino , Infecções por Mycoplasma/microbiologia , Nevada , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA