Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 739: 139698, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32540651

RESUMO

Effective adaptation to sea-level rise is critical for future flood protection. Nature-based solutions including salt marshes have been proposed to naturally enhance coastal infrastructure. A gently sloping grass-covered dike (i.e. Wide Green Dike) can be strengthened with clay accumulating locally in the salt marsh. This study explores the feasibility of extracting salt-marsh sediment for dike reinforcement as a climate adaptation strategy in several sea-level rise scenarios, using the Wide Green Dike in the Dutch part of the Ems-Dollard estuary as a case study. A 0-D sedimentation model was combined with a wave propagation model, and probabilistic models for wave impact and wave overtopping. This model system was used to determine the area of borrow pits required to supply clay for adequate dikes under different sea-level rise scenarios. For medium to high sea-level rise scenarios (>102 cm by 2100) thickening of the clay layer on the dike is required to compensate for the larger waves resulting from insufficient marsh accretion. The model results indicate that for our case study roughly 9.4 ha of borrow pit is sufficient to supply clay for 1 km of dike reinforcement until 2100. The simulated borrow pits are refilled within 22 simulation years on average, and infilling is projected to accelerate with sea-level rise and pit depth. This study highlights the potential of salt marshes as an asset for adapting flood defences in the future.

2.
PeerJ ; 2: e567, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25276502

RESUMO

Invasive species threaten biodiversity and incur costs exceeding billions of US$. Eradication efforts, however, are nearly always unsuccessful. Throughout much of North America, land managers have used expensive, and ultimately ineffective, techniques to combat invasive Phragmites australis in marshes. Here, we reveal that Phragmites may potentially be controlled by employing an affordable measure from its native European range: livestock grazing. Experimental field tests demonstrate that rotational goat grazing (where goats have no choice but to graze Phragmites) can reduce Phragmites cover from 100 to 20% and that cows and horses also readily consume this plant. These results, combined with the fact that Europeans have suppressed Phragmites through seasonal livestock grazing for 6,000 years, suggest Phragmites management can shift to include more economical and effective top-down control strategies. More generally, these findings support an emerging paradigm shift in conservation from high-cost eradication to economically sustainable control of dominant invasive species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA