Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 28(19)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37836636

RESUMO

Interactions between proteins and ions are essential for various biological functions like structural stability, metabolism, and signal transport. Given that more than half of all proteins bind to ions, it is becoming crucial to identify ion-binding sites. The accurate identification of protein-ion binding sites helps us to understand proteins' biological functions and plays a significant role in drug discovery. While several computational approaches have been proposed, this remains a challenging problem due to the small size and high versatility of metals and acid radicals. In this study, we propose IonPred, a sequence-based approach that employs ELECTRA (Efficiently Learning an Encoder that Classifies Token Replacements Accurately) to predict ion-binding sites using only raw protein sequences. We successfully fine-tuned our pretrained model to predict the binding sites for nine metal ions (Zn2+, Cu2+, Fe2+, Fe3+, Ca2+, Mg2+, Mn2+, Na+, and K+) and four acid radical ion ligands (CO32-, SO42-, PO43-, NO2-). IonPred surpassed six current state-of-the-art tools by over 44.65% and 28.46%, respectively, in the F1 score and MCC when compared on an independent test dataset. Our method is more computationally efficient than existing tools, producing prediction results for a hundred sequences for a specific ion in under ten minutes.


Assuntos
Metais , Proteínas , Ligantes , Proteínas/química , Sítios de Ligação , Ligação Proteica , Metais/química , Íons/química
2.
Commun Biol ; 5(1): 538, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35660793

RESUMO

Sperm capacitation is a post-testicular maturation step endowing spermatozoa with fertilizing capacity within the female reproductive tract, significant for fertility, reproductive health, and contraception. Recently discovered mammalian sperm zinc signatures and their changes during sperm in vitro capacitation (IVC) warranted a more in-depth study of zinc interacting proteins (further zincoproteins). Here, we identified 1752 zincoproteins, with 102 changing significantly in abundance (P < 0.05) after IVC. These are distributed across 8 molecular functions, 16 biological processes, and 22 protein classes representing 130 pathways. Two key, paradigm-shifting observations were made: i) during sperm capacitation, molecular functions of zincoproteins are both upregulated and downregulated within several molecular function categories; and ii) Huntington's and Parkinson's disease pathways were the two most represented, making spermatozoon a candidate model for studying neurodegenerative diseases. These findings highlight the importance of Zn2+ homeostasis in reproduction, offering new avenues in semen processing for human-assisted reproductive therapy, identification of somatic-reproductive comorbidities, and livestock breeding.


Assuntos
Capacitação Espermática , Zinco , Animais , Feminino , Fertilidade , Masculino , Mamíferos , Melhoramento Vegetal , Espermatozoides/metabolismo , Suínos , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA