Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Clin Epigenetics ; 7: 97, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26366234

RESUMO

BACKGROUND: Aberrant epigenetic silencing of tumor suppressor genes has been recognized as a driving force in cancer. Epigenetic drugs such as the DNA methylation inhibitor decitabine reactivate genes and are effective in myeloid leukemia, but resistance often develops and efficacy in solid tumors is limited. To improve their clinical efficacy, we searched among approved anti-cancer drugs for an epigenetic synergistic combination with decitabine. RESULTS: We used the YB5 cell line, a clonal derivative of the SW48 colon cancer cell line that contains a single copy of a hypermethylated cytomegalovirus (CMV) promoter driving green fluorescent protein (GFP) to screen for drug-induced gene reactivation and synergy with decitabine. None of the 16 anti-cancer drugs tested had effects on their own. However, in combination with decitabine, platinum compounds showed striking synergy in activating GFP. This was dose dependent, observed both in concurrent and sequential combinations, and also seen with other alkylating agents. Clinically achievable concentrations of carboplatin at (25 µM) and decitabine reactivated GFP in 28 % of the YB5 cells as compared to 15 % with decitabine alone. Epigenetic synergy was also seen at endogenously hypermethylated tumor suppressor genes such as MLH1 and PDLIM4. Genome-wide studies showed that reactivation of hypermethylated genes by the combination was significantly better than that induced by decitabine alone or carboplatin alone. Platinum compounds did not enhance decitabine-induced hypomethylation. Rather, we found significantly inhibited HP1α expression by carboplatin and the combination. This was accompanied by increased histone H3 lysine 4 (H3K4) trimethylation and histone H3 lysine 9 (H3K9) acetylation at reactivated genes (P < 0.0001) and reduced occupancy by methyl-binding proteins including MeCP2 and methyl-CpG-binding domain protein 2 (MBD2) (P < 0.0001). CONCLUSIONS: Our results suggest that the combination of decitabine with platinum analogs shows epigenetic synergy that might be exploited in the treatment of different cancers.

2.
Genome Biol ; 14(12): R144, 2013 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-24367927

RESUMO

BACKGROUND: Epithelial-mesenchymal transition (EMT) is known to impart metastasis and stemness characteristics in breast cancer. To characterize the epigenetic reprogramming following Twist1-induced EMT, we characterized the epigenetic and transcriptome landscapes using whole-genome transcriptome analysis by RNA-seq, DNA methylation by digital restriction enzyme analysis of methylation (DREAM) and histone modifications by CHIP-seq of H3K4me3 and H3K27me3 in immortalized human mammary epithelial cells relative to cells induced to undergo EMT by Twist1. RESULTS: EMT is accompanied by focal hypermethylation and widespread global DNA hypomethylation, predominantly within transcriptionally repressed gene bodies. At the chromatin level, the number of gene promoters marked by H3K4me3 increases by more than one fifth; H3K27me3 undergoes dynamic genomic redistribution characterized by loss at half of gene promoters and overall reduction of peak size by almost half. This is paralleled by increased phosphorylation of EZH2 at serine 21. Among genes with highly altered mRNA expression, 23.1% switch between H3K4me3 and H3K27me3 marks, and those point to the master EMT targets and regulators CDH1, PDGFRα and ESRP1. Strikingly, Twist1 increases the number of bivalent genes by more than two fold. Inhibition of the H3K27 methyltransferases EZH2 and EZH1, which form part of the Polycomb repressive complex 2 (PRC2), blocks EMT and stemness properties. CONCLUSIONS: Our findings demonstrate that the EMT program requires epigenetic remodeling by the Polycomb and Trithorax complexes leading to increased cellular plasticity. This suggests that inhibiting epigenetic remodeling and thus decrease plasticity will prevent EMT, and the associated breast cancer metastasis.


Assuntos
Epigênese Genética , Transição Epitelial-Mesenquimal , Glândulas Mamárias Humanas/citologia , Proteínas Nucleares/genética , Proteína 1 Relacionada a Twist/genética , Células Cultivadas , Células Epiteliais/metabolismo , Feminino , Regulação da Expressão Gênica , Genoma Humano , Histonas/metabolismo , Humanos , Glândulas Mamárias Humanas/metabolismo , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Análise de Sequência de RNA/métodos
3.
Genome Med ; 1(11): 106, 2009 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-19930617

RESUMO

DNA methylation of promoter CpG islands is strongly associated with gene silencing and is known as a frequent cause of loss of expression of tumor suppressor genes, as well as other genes involved in tumor formation. DNA methylation of driver genes is very likely outnumbered by the number of methylated passenger genes, though these can be useful as tumor markers. Much of what is known about the importance of DNA methylation in cancer was gained through small- and moderate-scale analysis of gene promoters and tumor samples. A much better understanding of the role of DNA methylation in cancer, either as a marker of disease or as an active driver of tumorigenesis, will likely be gained from genome-wide studies of this modification in normal and malignant cells. This goal has become more attainable with the recent introduction of large-scale genome analysis methodologies and these have been modified to allow for investigation of DNA methylation. Several research groups have been formed to coordinate efforts and apply these methodologies to decipher the methylome of healthy and diseased tissues. In this article we review technological advances in genome-wide methylation profiling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA