Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell ; 180(3): 521-535.e18, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31978320

RESUMO

Cortical layer 1 (L1) interneurons have been proposed as a hub for attentional modulation of underlying cortex, but the transformations that this circuit implements are not known. We combined genetically targeted voltage imaging with optogenetic activation and silencing to study the mechanisms underlying sensory processing in mouse barrel cortex L1. Whisker stimuli evoked precisely timed single spikes in L1 interneurons, followed by strong lateral inhibition. A mild aversive stimulus activated cholinergic inputs and evoked a bimodal distribution of spiking responses in L1. A simple conductance-based model that only contained lateral inhibition within L1 recapitulated the sensory responses and the winner-takes-all cholinergic responses, and the model correctly predicted that the network would function as a spatial and temporal high-pass filter for excitatory inputs. Our results demonstrate that all-optical electrophysiology can reveal basic principles of neural circuit function in vivo and suggest an intuitive picture for how L1 transforms sensory and modulatory inputs. VIDEO ABSTRACT.


Assuntos
Eletrofisiologia/métodos , Potenciais Somatossensoriais Evocados/fisiologia , Interneurônios/fisiologia , Inibição Neural/fisiologia , Imagem Óptica/métodos , Córtex Somatossensorial/citologia , Potenciais de Ação/fisiologia , Animais , Neurônios Colinérgicos/fisiologia , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Patch-Clamp/métodos , Potenciais Sinápticos/fisiologia , Vibrissas/fisiologia
2.
Cell ; 162(3): 635-47, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26232229

RESUMO

Recent progress in understanding the diversity of midbrain dopamine neurons has highlighted the importance--and the challenges--of defining mammalian neuronal cell types. Although neurons may be best categorized using inclusive criteria spanning biophysical properties, wiring of inputs, wiring of outputs, and activity during behavior, linking all of these measurements to cell types within the intact brains of living mammals has been difficult. Here, using an array of intact-brain circuit interrogation tools, including CLARITY, COLM, optogenetics, viral tracing, and fiber photometry, we explore the diversity of dopamine neurons within the substantia nigra pars compacta (SNc). We identify two parallel nigrostriatal dopamine neuron subpopulations differing in biophysical properties, input wiring, output wiring to dorsomedial striatum (DMS) versus dorsolateral striatum (DLS), and natural activity patterns during free behavior. Our results reveal independently operating nigrostriatal information streams, with implications for understanding the logic of dopaminergic feedback circuits and the diversity of mammalian neuronal cell types.


Assuntos
Vias Neurais , Neurônios/metabolismo , Substância Negra/metabolismo , Animais , Mapeamento Encefálico , Dopamina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Recompensa , Choque
3.
Nature ; 561(7723): 343-348, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30158696

RESUMO

The naturally occurring channelrhodopsin variant anion channelrhodopsin-1 (ACR1), discovered in the cryptophyte algae Guillardia theta, exhibits large light-gated anion conductance and high anion selectivity when expressed in heterologous settings, properties that support its use as an optogenetic tool to inhibit neuronal firing with light. However, molecular insight into ACR1 is lacking owing to the absence of structural information underlying light-gated anion conductance. Here we present the crystal structure of G. theta ACR1 at 2.9 Å resolution. The structure reveals unusual architectural features that span the extracellular domain, retinal-binding pocket, Schiff-base region, and anion-conduction pathway. Together with electrophysiological and spectroscopic analyses, these findings reveal the fundamental molecular basis of naturally occurring light-gated anion conductance, and provide a framework for designing the next generation of optogenetic tools.


Assuntos
Ânions/metabolismo , Channelrhodopsins/química , Channelrhodopsins/metabolismo , Criptófitas/química , Bacteriorodopsinas/química , Sítios de Ligação , Channelrhodopsins/efeitos da radiação , Cristalografia por Raios X , Condutividade Elétrica , Ativação do Canal Iônico/efeitos da radiação , Transporte de Íons/efeitos da radiação , Modelos Moleculares , Optogenética/métodos , Optogenética/tendências , Retinaldeído/metabolismo , Bases de Schiff/química
4.
Nature ; 561(7723): 349-354, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30158697

RESUMO

Both designed and natural anion-conducting channelrhodopsins (dACRs and nACRs, respectively) have been widely applied in optogenetics (enabling selective inhibition of target-cell activity during animal behaviour studies), but each class exhibits performance limitations, underscoring trade-offs in channel structure-function relationships. Therefore, molecular and structural insights into dACRs and nACRs will be critical not only for understanding the fundamental mechanisms of these light-gated anion channels, but also to create next-generation optogenetic tools. Here we report crystal structures of the dACR iC++, along with spectroscopic, electrophysiological and computational analyses that provide unexpected insights into pH dependence, substrate recognition, channel gating and ion selectivity of both dACRs and nACRs. These results enabled us to create an anion-conducting channelrhodopsin integrating the key features of large photocurrent and fast kinetics alongside exclusive anion selectivity.


Assuntos
Ânions/metabolismo , Channelrhodopsins/química , Channelrhodopsins/metabolismo , Ativação do Canal Iônico , Optogenética/métodos , Animais , Caenorhabditis elegans , Células Cultivadas , Channelrhodopsins/genética , Channelrhodopsins/efeitos da radiação , Cristalografia por Raios X , Eletrofisiologia , Feminino , Células HEK293 , Hipocampo/citologia , Humanos , Concentração de Íons de Hidrogênio , Ativação do Canal Iônico/efeitos da radiação , Transporte de Íons/efeitos da radiação , Cinética , Masculino , Camundongos , Modelos Moleculares , Neurônios/metabolismo , Especificidade por Substrato
5.
Neuron ; 107(5): 836-853.e11, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32574559

RESUMO

The resolution and dimensionality with which biologists can characterize cell types have expanded dramatically in recent years, and intersectional consideration of such features (e.g., multiple gene expression and anatomical parameters) is increasingly understood to be essential. At the same time, genetically targeted technology for writing in and reading out activity patterns for cells in living organisms has enabled causal investigation in physiology and behavior; however, cell-type-specific delivery of these tools (including microbial opsins for optogenetics and genetically encoded Ca2+ indicators) has thus far fallen short of versatile targeting to cells jointly defined by many individually selected features. Here, we develop a comprehensive intersectional targeting toolbox including 39 novel vectors for joint-feature-targeted delivery of 13 molecular payloads (including opsins, indicators, and fluorophores), systematic approaches for development and optimization of new intersectional tools, hardware for in vivo monitoring of expression dynamics, and the first versatile single-virus tools (Triplesect) that enable targeting of triply defined cell types.


Assuntos
Técnicas Genéticas , Neurônios , Optogenética , Animais , Dependovirus , Vetores Genéticos , Células HEK293 , Humanos
6.
BMC Cell Biol ; 8: 4, 2007 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-17239241

RESUMO

BACKGROUND: IL-10 has a potent inhibitory effect on osteoclastogenesis. In vitro and in vivo studies confirm the importance of this cytokine in bone metabolism, for instance IL-10-deficient mice develop the hallmarks of osteoporosis. Although it is known that IL-10 directly inhibits osteoclastogenesis at an early stage, preventing differentiation of osteoclast progenitors to preosteoclasts, the precise mechanism of its action is not yet clear. Several major pathways regulate osteoclastogenesis, with key signalling genes such as p38, TRAF6, NF-kappaB and NFATc1 well established as playing vital roles. We have looked at gene expression in eleven of these genes using real-time quantitative PCR on RNA extracted from RANKL-treated RAW264.7 monocytes. RESULTS: There was no downregulation by IL-10 of DAP12, FcgammaRIIB, c-jun, RANK, TRAF6, p38, NF-kappaB, Gab2, Pim-1, or c-Fos at the mRNA level. However, we found that IL-10 significantly reduces RANKL-induced NFATc1 expression. NFATc1 is transcribed from two alternative promoters in Mus musculus and, interestingly, only the variant transcribed from promoter P1 and beginning with exon 1 was downregulated by IL-10 (isoform 1). In addition, immunofluorescence studies showed that IL-10 reduces NFATc1 levels in RANKL-treated precursors and suppresses nuclear translocation. The inhibitory effect of IL-10 on tartrate-resistant acid phosphatase-positive cell number and NFATc1 mRNA expression was reversed by the protein kinase C agonist phorbol myristate acetate, providing evidence that interleukin-10 disrupts NFATc1 activity through its effect on Ca2+ mobilisation. CONCLUSION: IL-10 acts directly on mononuclear precursors to inhibit NFATc1 expression and nuclear translocation, and we provide evidence that the mechanism may involve disruption of Ca2+ mobilisation. We detected downregulation only of the NFATc1 isoform 1 transcribed from promoter P1. This is the first report indicating that one of the ways in which IL-10 directly inhibits osteoclastogenesis is by suppressing NFATc1 activity.


Assuntos
Diferenciação Celular/fisiologia , Núcleo Celular/metabolismo , Interleucina-10/fisiologia , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/citologia , Animais , Cálcio/metabolismo , Carcinógenos/farmacologia , Linhagem Celular , Regulação da Expressão Gênica/fisiologia , Camundongos , Fatores de Transcrição NFATC/genética , Osteoclastos/metabolismo , Transporte Proteico/fisiologia , RNA Mensageiro/metabolismo , Acetato de Tetradecanoilforbol/farmacologia
7.
Oncogene ; 21(41): 6395-402, 2002 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-12214281

RESUMO

The locus for a syndrome of focal palmoplantar keratoderma (Tylosis) associated with squamous cell oesophageal cancer (TOC) has been mapped to chromosome 17q25, a region frequently deleted in sporadic squamous cell oesophageal tumours. Further haplotype analysis described here, based on revised maps of marker order, has reduced the TOC minimal region to a genetic interval of 2 cM limited by the microsatellite markers D17S785 and D17S751. Partial sequence data and complete physical maps estimate the actual size of this region to be only 0.5 Mb. This analysis allowed the exclusion of proposed candidate tumour suppressor genes including MLL septin-like fusion (MSF), survivin, and deleted in multiple human cancer (DMC1). Computer analysis of sequence data from the minimal region identified 13 candidate genes and the presence of 50-70 other 'gene fragments' as ESTs and/or predicted exons and genes. Ten of the characterized genes were assayed for mutations but no disease-specific alterations were identified in the coding and promoter sequences. This region of chromosome 17q25 is, therefore, relatively gene-rich, containing 13 known and possibly as many as 50 predicted genes. Further mutation analysis of these predicted genes, and others possibly residing in the region, is required in order to identify the elusive TOC locus.


Assuntos
Carcinoma de Células Escamosas/genética , Cromossomos Humanos Par 17 , Neoplasias Esofágicas/genética , Ceratodermia Palmar e Plantar Difusa/genética , Carcinoma de Células Escamosas/etiologia , Mapeamento Cromossômico , Neoplasias Esofágicas/etiologia , Genes Supressores de Tumor , Humanos , Ceratodermia Palmar e Plantar Difusa/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA