Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 591(7851): 599-603, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33762765

RESUMO

Terrestrial ecosystems remove about 30 per cent of the carbon dioxide (CO2) emitted by human activities each year1, yet the persistence of this carbon sink depends partly on how plant biomass and soil organic carbon (SOC) stocks respond to future increases in atmospheric CO2 (refs. 2,3). Although plant biomass often increases in elevated CO2 (eCO2) experiments4-6, SOC has been observed to increase, remain unchanged or even decline7. The mechanisms that drive this variation across experiments remain poorly understood, creating uncertainty in climate projections8,9. Here we synthesized data from 108 eCO2 experiments and found that the effect of eCO2 on SOC stocks is best explained by a negative relationship with plant biomass: when plant biomass is strongly stimulated by eCO2, SOC storage declines; conversely, when biomass is weakly stimulated, SOC storage increases. This trade-off appears to be related to plant nutrient acquisition, in which plants increase their biomass by mining the soil for nutrients, which decreases SOC storage. We found that, overall, SOC stocks increase with eCO2 in grasslands (8 ± 2 per cent) but not in forests (0 ± 2 per cent), even though plant biomass in grasslands increase less (9 ± 3 per cent) than in forests (23 ± 2 per cent). Ecosystem models do not reproduce this trade-off, which implies that projections of SOC may need to be revised.


Assuntos
Dióxido de Carbono/metabolismo , Sequestro de Carbono , Plantas/metabolismo , Solo/química , Biomassa , Pradaria , Modelos Biológicos
2.
J Dairy Sci ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38825095

RESUMO

As the proportion of prime carcasses originating from dairy herds increases, the focus is shifting to the beef merit of the progeny from dairy herds. Several dairy cow total merit indexes include a negative weight on measures of cow size. However, there is a lack of knowledge on the impact of genetic selection, solely for lighter or smaller-sized dairy cows, on the beef performance of their progeny. Therefore, the objective of this study was to quantify the genetic correlations among cow size traits (i.e., cow body weight (BW), cow carcass weight (CW)), cow body condition score (BCS), cow carcass conformation (CC), and cow carcass fat cover (CF), as well as the correlations between these cow traits and a series of beef performance slaughter-related traits (i.e., CW, CC, CF, and age at slaughter (AS)) in their progeny. After data editing, there were 52,950 cow BW and BCS records, along with 57,509 cow carcass traits (i.e., CW, CC, and CF); carcass records from 346,350 prime animals along with AS records from 316,073 prime animals were also used. Heritability estimates ranged from moderate to high (0.18 to 0.62) for all cow and prime animal traits. The same carcass trait in cows and prime animals were strongly genetically correlated with each other (0.76 to 0.85), implying that they are influenced by very similar genomic variants. Selecting exclusively for cows with higher BCS (i.e., fatter) will, on average, produce more conformed prime animals carcasses, owing to a moderate genetic correlation (0.30) between both traits. Genetic correlations revealed that selecting exclusively for lighter BW or CW cows will, on average, result in lighter prime animal carcasses of poor CC, while also delaying slaughter age. Nonetheless, selective breeding through total merit indexes should be successful in breeding for smaller dairy cows, and desirable prime animal carcass traits concurrently, because of the non-unity genetic correlations between the cow and prime animal traits; this will help to achieve a more ethical, environmentally sustainable, and economically viable dairy-beef industry.

3.
Proc Biol Sci ; 290(2001): 20230584, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37339745

RESUMO

Temporal patterns in spawning and juvenile recruitment can have major effects on population size and the demographic structure of coral reef fishes. For harvested species, these patterns are crucial in determining stock size and optimizing management strategies such as seasonal closures. For the commercially important coral grouper (Plectropomus spp.) on the Great Barrier Reef, histological studies indicate peak spawning around the summer new moons. Here we examine the timing of spawning activity for P. maculatus in the southern Great Barrier Reef by deriving age in days for 761 juvenile fish collected between 2007 and 2022, and back-calculating settlement and spawning dates. Age-length relationships were used to estimate spawning and settlement times for a further 1002 juveniles collected over this period. Unexpectedly, our findings indicate year-round spawning activity generates distinct recruitment cohorts that span several weeks to months. Peak spawning varied between years with no clear association with environmental cues, and little to no alignment with existing seasonal fisheries closures around the new moon. Given the variability and uncertainty in peak spawning times, this fishery may benefit from additional and longer seasonal closures, or alternative fisheries management strategies, to maximize the recruitment contribution from periods of greatest reproductive success.


Assuntos
Antozoários , Bass , Animais , Estações do Ano , Peixes , Recifes de Corais , Pesqueiros , Envelhecimento
4.
Anim Genet ; 52(2): 208-213, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33527466

RESUMO

Proper quality control of data prior to downstream analyses is fundamental to ensure integrity of results; quality control of genomic data is no exception. While many metrics of quality control of genomic data exist, the objective of the present study was to quantify the genotype and allele concordance rate between called single nucleotide polymorphism (SNP) genotypes differing in GenCall (GC) score; the GC score is a confidence measure assigned to each Illumina genotype call. This objective was achieved using Illumina beadchip genotype data from 771 cattle (12 428 767 genotypes in total post-editing) and 80 sheep (1 557 360 SNPs genotypes in total post-editing) each genotyped in duplicate. The called genotype with the lowest associated GC score was compared to the genotype called for the same SNP in the same duplicated animal sample but with a GC score of >0.90 (assumed to represent the true genotype). The mean genotype concordance rate for a GC score of <0.300, 0.300-0.549, and ≥0.550 in the cattle (sheep in parenthesis) was 0.9467 (0.9864), 0.9707 (0.9953), and 0.9994 (0.99997) respectively; the respective allele concordance rate was 0.9730 (0.9930), 0.9849 (0.9976), and 0.9997 (0.99998). Hence, concordance eroded as the GC score of the called genotype reduced, albeit the impact was not dramatic and was not very noticeable until a GC score of <0.55. Moreover, the impact was greater and more consistent in the cattle population than in the sheep population. Furthermore, an impact of GC score on genotype concordance rate existed even for the same SNP GenTrain value; the GenTrain value is a statistical score that depicts the shape of the genotype clusters and the relative distance between the called genotype clusters.


Assuntos
Bovinos/genética , Genótipo , Ovinos/genética , Alelos , Animais , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/veterinária , Polimorfismo de Nucleotídeo Único
5.
J Dairy Sci ; 104(7): 8076-8093, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33896640

RESUMO

Various studies have validated that genetic divergence in dairy cattle translates to phenotypic differences; nonetheless, many studies that consider the breeding goal, or associated traits, have generally been small scale, often undertaken in controlled environments, and they lack consideration for the entire suite of traits included in the breeding goal. Therefore, the objective of the present study was to fill this void, and in doing so, provide producers with confidence that the estimated breeding values (EBV) included in the breeding goal do (or otherwise) translate to desired changes in performance among commercial cattle; an additional outcome of such an approach is the identification of potential areas for improvements. Performance data on 536,923 Irish dairy cows (and their progeny) from 13,399 commercial spring-calving herds were used. Association analyses between the cow's EBV of each trait included in the Irish total merit index for dairy cows (which was derived before her own performance data accumulated) and her subsequent performance were undertaken using linear mixed models; milk production, fertility, calving, maintenance (i.e., liveweight), beef, health, and management traits were all considered in the analyses. Results confirm that excelling in EBV for individual traits, as well as on the total merit index, generally delivers superior phenotypic performance; examples of the improved performance for genetically elite animals include a greater yield and concentration of both milk fat and milk protein, despite a lower milk volume, superior reproductive performance, better survival, improved udder and hoof health, lighter cows, and fewer calving complications; all these gains were achieved with minimal to no effect on the beef merit of the dairy cow's progeny. The associated phenotypic change in each performance trait per unit change in its respective EBV was largely in line with the direction and magnitude of expectation, the exception being for calving interval. Per unit change in calving interval EBV, the direction of phenotypic response was as anticipated but the magnitude of the response was only half of what was expected. Despite the deviation from expectation between the calving interval EBV and its associated phenotype, a superior total merit index or a superior fertility EBV was indeed associated with an improvement in all detailed fertility performance phenotypes investigated. Results substantiate that breeding is a sustainable strategy of improving phenotypic performance in commercial dairy cattle and, by extension, profit.


Assuntos
Fertilidade , Leite , Animais , Bovinos/genética , Estudos Transversais , Feminino , Lactação , Fenótipo , Reprodução
6.
J Dairy Sci ; 104(6): 6885-6896, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33773797

RESUMO

Accurate estimates of genetic merit for both live weight and body condition score (BCS) could be useful additions to both national- and herd-breeding programs. Although recording live weight and BCS is not technologically arduous, data available for use in routine genetic evaluations are generally lacking. The objective of the present study was to explore the usefulness of routinely recorded data, namely linear type traits (which also included BCS but only assessed visually) and carcass traits in the pursuit of genetic evaluations for both live weight and BCS in dairy cows. The data consisted of on-farm records of live weight and BCS (assessed using both visual and tactile cues) from 33,242 dairy cows in 201 commercial Irish herds. These data were complemented with information on 6 body-related linear type traits (i.e., stature, angularity, chest width, body depth, BCS, and rump width) and 3 cull cow carcass measures (i.e., carcass weight, conformation, and fat cover) on a selection of these animals plus close relatives. (Co)variance components were estimated using animal linear mixed models. The genetic correlation between the type traits stature, angularity, body depth, chest width, rump width, and visually-assessed BCS with live weight was 0.68, -0.28, 0.43, 0.64, 0.61, and 0.44, respectively. The genetic correlation between angularity and BCS measured on farm (based on both visual and tactile appraisal) was -0.79; the genetic and phenotypic correlation between BCS assessed visually as part of the linear assessment with BCS assessed by producers using both tactile and visual cues was 0.90 and 0.27, respectively. The genetic (phenotypic) correlation between cull cow carcass weight and live weight was 0.81 (0.21), and the genetic (phenotypic) correlation between cull cow carcass fat cover and BCS assessed on live cows was 0.44 (0.12). Estimated breeding values (EBV) for live weight and BCS in a validation population of cows were generated using a multitrait evaluation with observations for just the type traits, just the carcass traits, and both the type traits and carcass traits; the EBV were compared with the respective live weight and BCS phenotypic observations. The regression of phenotypic live weight on its EBV from the multitrait evaluations was 1.00 (i.e., the expectation) when the EBV was generated using just linear type trait data, but less than 1 (0.83) when using just carcass data. However, the regression changed across parities and stages of lactation. The partial correlation (after adjusting for contemporary group, parity by stage of lactation, heterosis, and recombination loss) between phenotypic live weight and EBV for live weight estimated using the 3 different scenarios (i.e., type only, carcass only, type plus carcass) ranged from 0.38 to 0.43. Although the prediction of phenotypic BCS from its respective EBV was relatively good when using just the linear type trait data (regression coefficient of 0.83 with a partial correlation of 0.22), the predictive ability of BCS EBV based on just carcass data was poor and should not be used. Overall, linear type trait data are a useful source of information to predict live weight and BCS with minimal additional predictive value from also including carcass data. Nonetheless, in the absence of linear type trait data, information on carcass traits can be useful in predicting genetic merit for mature cow live weight. Prediction of cow BCS from cow carcass data is not recommended.


Assuntos
Lactação , Animais , Bovinos/genética , Fazendas , Feminino , Modelos Lineares , Paridade , Fenótipo , Gravidez
7.
J Dairy Sci ; 103(2): 1701-1710, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31785871

RESUMO

Understanding the preferences of dairy cattle producers when selecting beef bulls for mating can help inform beef breeding programs as well as provide default parameters in mating advice systems. The objective of the present study was to characterize the genetic merit of beef artificial insemination (AI) bulls used in dairy herds, with particular reference to traits associated with both calving performance and carcass merit. The characteristics of the beef AI bulls used were compared with those of the dairy AI bulls used on the same farms. A total of 2,733,524 AI records from 928,437 females in 5,967 Irish dairy herds were used. Sire predicted transmitting ability (PTA) values and associated reliability values for calving performance and carcass traits based on national genetic evaluations from prior to the insemination were used. Fixed effects models were used to relate both genetic merit and the associated reliability of the dairy and beef bulls used on the farm with herd size, the extent of Holstein-Friesian × Jersey crossbreeding adopted by the herd, whether the herd used a technician insemination service or do-it-yourself, and the parity of the female mated. The mean direct calving difficulty PTA of the beef bulls used was 1.85 units higher than that of the dairy bulls but with over 3 times greater variability in the beef bulls. This 1.85 units equates biologically to an expectation of 1.85 more dystocia events per 100 dairy cows mated in the beef × dairy matings. The mean calving difficulty PTA of the dairy AI bulls used reduced with increasing herd size, whereas the mean calving difficulty PTA of the beef AI bulls used increased as herd size increased from 75 cows or fewer to 155 cows; the largest herds (>155 cows) used notably easier-calving beef bulls, albeit the calving difficulty PTA of the beef bulls was 3.33 units versus 1.67 units for the dairy bulls used in these herds. Although we found a general tendency for larger herds to use dairy AI bulls with lower reliability, this trend was not obvious in the beef AI bulls used. Irrespective of whether dairy or beef AI bulls were considered, herds that operated more extensive Holstein-Friesian × Jersey crossbreeding (i.e., more than 50% crossbred cows) used, on average, easier calving, shorter gestation-length bulls with lighter expected progeny carcasses of poorer conformation. Mean calving difficulty PTA of dairy bulls used increased from 1.39 in heifers to 1.79 in first-parity cows and to 1.82 in second-parity cows, remaining relatively constant thereafter. In contrast, the mean calving difficulty PTA of the beef bulls used increased consistently with cow parity. Results from the present study demonstrate a clear difference in the mean acceptable genetic merit of beef AI bulls relative to dairy AI bulls but also indicates that these acceptable limits vary by herd characteristics.


Assuntos
Cruzamento , Bovinos , Inseminação Artificial/veterinária , Animais , Feminino , Masculino , Paridade , Fenótipo , Gravidez , Reprodutibilidade dos Testes , Reprodução
8.
BMC Genomics ; 20(1): 720, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31533623

RESUMO

BACKGROUND: The high narrow sense heritability of carcass traits suggests that the underlying additive genetic potential of an individual should be strongly correlated with both animal carcass quality and quantity, and therefore, by extension, carcass value. Therefore, the objective of the present study was to detect genomic regions associated with three carcass traits, namely carcass weight, conformation and fat cover, using imputed whole genome sequence in 28,470 dairy and beef sires from six breeds with a total of 2,199,926 phenotyped progeny. RESULTS: Major genes previously associated with carcass performance were identified, as well as several putative novel candidate genes that likely operate both within and across breeds. The role of MSTN in carcass performance was re-affirmed with the segregating Q204X mutation explaining 1.21, 1.11 and 5.95% of the genetic variance in carcass weight, fat and conformation, respectively in the Charolais population. In addition, a genomic region on BTA6 encompassing the NCAPG/LCORL locus, which is a known candidate locus associated with body size, was associated with carcass weight in Angus, Charolais and Limousin. Novel candidate genes identified included ZFAT in Angus, and SLC40A1 and the olfactory gene cluster on BTA15 in Charolais. Although the majority of associations were breed specific, associations that operated across breeds included SORCS1 on BTA26, MCTP2 on BTA21 and ARL15 on BTA20; these are of particular interest due to their potential informativeness in across-breed genomic evaluations. Genomic regions affecting all three carcass traits were identified in each of the breeds, although these were mainly concentrated on BTA2 and BTA6, surrounding MSTN and NCAPG/LCORL, respectively. This suggests that although major genes may be associated with all three carcass traits, the majority of genes containing significant variants (unadjusted p-value < 10- 4) may be trait specific associations of small effect. CONCLUSIONS: Although plausible novel candidate genes were identified, the proportion of variance explained by these candidates was minimal thus reaffirming that while carcass performance may be affected by major genes in the form of MSTN and NCAPG/LCORL, the majority of variance is attributed to the additive (and possibly multiplicative) effect of many polymorphisms of small effect.


Assuntos
Bovinos/genética , Fenótipo , Sequenciamento Completo do Genoma , Tecido Adiposo/metabolismo , Animais , Peso Corporal/genética , Bovinos/crescimento & desenvolvimento , Indústria de Laticínios , Genótipo , Carne/análise , Polimorfismo de Nucleotídeo Único
9.
J Dairy Sci ; 102(11): 10056-10072, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31495621

RESUMO

The desire to increase profit on dairy farms necessitates consideration of the revenue attainable from the sale of surplus calves for meat production. However, the generation of calves that are expected to excel in efficiency of growth and carcass merit must not be achieved to the detriment of the dairy female and her ability to calve and re-establish pregnancy early postcalving without any compromise in milk production. Given the relatively high heritability of many traits associated with calving performance and carcass merit, and the tendency for many of these traits to be moderately to strongly antagonistic, a breeding index that encompasses both calving performance and meat production could be a useful tool to fill the void in supporting decisions on bull selection. The objective of the present study was to derive a dairy-beef index (DBI) framework to rank beef bulls for use on dairy females with the aim of striking a balance between the efficiency of valuable meat growth in the calf and the subsequent performance of the dam. Traits considered for inclusion in this DBI were (1) direct calving difficulty; (2) direct gestation length; (3) calf mortality; (4) feed intake; (5) carcass merit reflected by carcass weight, conformation, and fat and the ability to achieve minimum standards for each; (6) docility; and (7) whether the calf was polled. Each trait was weighted by its respective economic weight, most of which were derived from the analyses of available phenotypic data, supplemented with some assumptions on costs and prices. The genetic merit for a range of performance metrics of 3,835 artificial insemination beef bulls from 14 breeds ranked on this proposed DBI was compared with an index comprising only direct calving difficulty and gestation length (the 2 generally most important characteristics of dairy farmers when selecting beef bulls). Within the Angus breed (i.e., the beef breed most commonly used on dairy females), the correlation between the DBI and the index of genetic merit for direct calving difficulty plus gestation length was 0.74; the mean of the within-breed correlations across all other breeds was 0.87. The ranking of breeds changed considerably when ranked based on the top 20 artificial insemination bulls excelling in the DBI versus excelling in the index of calving difficulty and gestation length. Dairy breeds ranked highest on the index of calving difficulty and gestation length, whereas the Holstein and Friesian breeds were intermediate on the DBI; the Jersey breed was one of the poorest breeds on DBI, superior only to the Charolais breed. The results clearly demonstrate that superior carcass and growth performance can be achieved with the appropriate selection of beef bulls for use on dairy females with only a very modest increase in collateral effect on cow performance (i.e., 2-3% greater dystocia expected and a 6-d-longer gestation length).


Assuntos
Bovinos/fisiologia , Leite/metabolismo , Carne Vermelha/economia , Animais , Cruzamento/economia , Bovinos/genética , Bovinos/crescimento & desenvolvimento , Comércio , Indústria de Laticínios/economia , Feminino , Inseminação Artificial/veterinária , Masculino , Fenótipo , Gravidez
10.
J Dairy Sci ; 101(12): 11052-11060, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30268620

RESUMO

Comparison of alternative dairy (cross-)breeding programs requires full appraisals of all revenues and costs, including beef merit. Few studies exist on carcass characteristics of crossbred dairy progeny originating from dairy herds as well as their dams. The objective of the present study was to quantify, using a national database, the carcass characteristics of young animals and cows differing in their fraction of Jersey. The data set consisted of 117,593 young animals and 42,799 cows. The associations between a combination of sire and dam breed proportion (just animal breed proportion when the dependent variable was on cows) with age at slaughter (just for young animals), carcass weight, conformation, fat score, price per kilogram, and total carcass value were estimated using mixed models that accounted for covariances among herdmates of the same sex slaughtered in close proximity in time; we also accounted for age at slaughter in young animals (which was substituted with carcass weight and carcass fat score when the dependent variable was age at slaughter), animal sex, parity of the cow or dam (where relevant), and temporal effects represented by a year-by-month 2-way interaction. For young animals, the heaviest of the dairy carcasses were from the mating of a Holstein-Friesian dam and a Holstein-Friesian sire (323.34 kg), whereas the lightest carcasses were from the mating of a purebred Jersey dam to a purebred Jersey sire which were 46.31 kg lighter (standard error of the difference = 1.21 kg). The young animal carcass weight of an F1 Holstein-Friesian × Jersey cross was 20.4 to 27.0 kg less than that of a purebred Holstein-Friesian animal. The carcass conformation of a Holstein-Friesian young animal was 26% superior to that of a purebred Jersey, translating to a difference of 0.78 conformation units on a scale of 1 to 15. Purebred Holstein-Friesians produced carcasses with less fat than their purebred Jersey counterparts. The difference in carcass price per kilogram among the alternative sire-dam breed combinations investigated was minimal, although large differences existed among the different breed types for overall carcass value; the carcass value of a Holstein-Friesian animal was 20% greater than that of a Jersey animal. Purebred Jersey animals required, on average, 21 d longer to reach a given carcass weight and fat score relative to a purebred Holstein-Friesian. The difference in age at slaughter between a purebred Holstein-Friesian animal and the mating between a Holstein-Friesian sire with a Jersey dam, and vice versa, was between 7.0 and 8.9 d. A 75.8-kg difference in carcass weight existed between the carcass of a purebred Jersey cow and that of a Holstein-Friesian cow; a 50% Holstein-Friesian-50% Jersey cow had a carcass 42.0 kg lighter than that of a purebred Holstein-Friesian cow. Carcass conformation was superior in purebred Holstein-Friesian compared with purebred Jersey cows. Results from this study represent useful input parameters to populate simulation models of alternative breeding programs on dairy farms, and to help beef farmers evaluate the cost-benefit of rearing, for slaughter, animals differing in Jersey fraction.


Assuntos
Bovinos/genética , Carne/análise , Criação de Animais Domésticos/economia , Animais , Cruzamento/economia , Bovinos/crescimento & desenvolvimento , Bovinos/fisiologia , Comércio , Custos e Análise de Custo , Feminino , Masculino , Carne/economia , Paridade , Linhagem , Gravidez , Reprodução
11.
J Dairy Sci ; 99(7): 5681-5689, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27132092

RESUMO

There is renewed interest in dairy cow crossbreeding in Ireland as a means to further augment productivity and profitability. The objective of the present study was to compare milk production and fertility performance for Holstein, Friesian, and Jersey purebred cows, and their respective crosses in 40 Irish spring-calving commercial dairy herds from the years 2008 to 2012. Data on 24,279 lactations from 11,808 cows were available. The relationship between breed proportion, as well as heterosis and recombination coefficients with performance, was quantified within a mixed model framework that also contained the fixed effects of parity; cow and contemporary group of herd-year-season of calving were both included as random effects in the mixed model. Breed proportion was associated with all milk production parameters investigated. Milk yield was greatest for Holstein (5,217kg), intermediate for Friesian (4,591kg), and least for Jersey (4,230kg), whereas milk constituents (i.e., fat and protein concentration) were greatest for Jersey (9.38%), intermediate for Friesian (7.91%), and least for Holstein (7.75%). Yield of milk solids in crossbred cows exceeded their respective parental average performance; greatest milk solids yield (i.e., fat kg + protein kg) was observed in the Holstein × Jersey first-cross, yielding 25kg more than the mid-parent mean. There was no consistent breed effect on the reproductive traits investigated. Relative to the mid-parent mean, Holstein × Jersey cows calved younger as heifers and had a shorter calving interval. Friesian × Jersey first-cross cows also had a shorter calving interval relative to their mid-parent mean. Results were consistent with findings from smaller-scale controlled experiments. Breed complementarity and heterosis attainable from crossbreeding resulted in superior animal performance and, consequently, greater expected profitability in crossbred cows compared with their respective purebreds.


Assuntos
Indústria de Laticínios , Leite/metabolismo , Animais , Bovinos , Fazendas , Feminino , Fertilidade , Lactação , Estações do Ano
12.
J Dairy Sci ; 99(2): 1286-1297, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26709166

RESUMO

The objective of the study was to estimate the genetic relationships between detailed reproductive traits derived from ultrasound examination of the reproductive tract and a range of performance traits in Holstein-Friesian dairy cows. The performance traits investigated included calving performance, milk production, somatic cell score (i.e., logarithm transformation of somatic cell count), carcass traits, and body-related linear type traits. Detailed reproductive traits included (1) resumed cyclicity at the time of examination, (2) multiple ovulations, (3) early ovulation, (4) heat detection, (5) ovarian cystic structures, (6) embryo loss, and (7) uterine score, measured on a 1 (little or no fluid with normal tone) to 4 (large quantity of fluid with a flaccid tone) scale, based on the tone of the uterine wall and the quantity of fluid present in the uterus. (Co)variance components were estimated using a repeatability animal linear mixed model. Genetic merit for greater milk, fat, and protein yield was associated with a reduced ability to resume cyclicity postpartum (genetic correlations ranged from -0.25 to -0.15). Higher genetic merit for milk yield was also associated with a greater genetic susceptibility to multiple ovulations. Genetic predisposition to elevated somatic cell score was associated with a decreased likelihood of cyclicity postpartum (genetic correlation of -0.32) and a greater risk of both multiple ovulations (genetic correlation of 0.25) and embryo loss (genetic correlation of 0.32). Greater body condition score was genetically associated with an increased likelihood of resumption of cyclicity postpartum (genetic correlation of 0.52). Genetically heavier, fatter carcasses with better conformation were also associated with an increased likelihood of resumed cyclicity by the time of examination (genetic correlations ranged from 0.24 to 0.41). Genetically heavier carcasses were associated with an inferior uterine score as well as a greater predisposition to embryo loss. Despite the overall antagonistic relationship between reproductive performance and both milk and carcass traits, not all detailed aspects of reproduction performance exhibited an antagonistic relationship.


Assuntos
Bovinos/genética , Lactação/genética , Reprodução/genética , Animais , Composição Corporal/genética , Contagem de Células , Gorduras/análise , Feminino , Fertilidade/genética , Genótipo , Modelos Lineares , Leite/química , Leite/citologia , Proteínas do Leite/análise , Ovário/diagnóstico por imagem , Ovulação , Fenótipo , Período Pós-Parto , Característica Quantitativa Herdável , Ultrassonografia , Útero/diagnóstico por imagem
13.
J Dairy Sci ; 98(6): 4095-106, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25841973

RESUMO

The objective of the study was to estimate genetic parameters of detailed reproductive traits derived from ultrasound examination of the reproductive tract as well as their genetic correlations with traditional reproductive traits. A total of 226,141 calving and insemination records as well as 74,134 ultrasound records from Irish dairy cows were used. Traditional reproductive traits included postpartum interval to first service, conception, and next calving, as well as the interval from first to last service; number of inseminations, pregnancy rate to first service, pregnant within 42 d of the herd breeding season, and submission in the first 21 d of the herd breeding season were also available. Detailed reproductive traits included resumed cyclicity at the time of ultrasound examination, incidence of multiple ovulations, incidence of early postpartum ovulation, heat detection, ovarian cystic structures, embryo loss, and uterine score; the latter was a subjectively assessed on a scale of 1 (little fluid with normal uterine tone) to 4 (large quantity of fluid with a flaccid uterine tone). Variance (and covariance) components were estimated using repeatability animal linear mixed models. Heritability for all reproductive traits were generally low (0.001-0.05), with the exception of traits related to cyclicity postpartum, regardless if defined traditionally (0.07; calving to first service) or from ultrasound examination [resumed cyclicity at the time of examination (0.07) or early postpartum ovulation (0.10)]. The genetic correlations among the detailed reproductive traits were generally favorable. The exception was the genetic correlation (0.29) between resumed cyclicity and uterine score; superior genetic merit for cyclicity postpartum was associated with inferior uterine score. Superior genetic merit for most traditional reproductive traits was associated with superior genetic merit for resumed cyclicity (genetic correlations ranged from -0.59 to -0.36 and from 0.56 to 0.70) and uterine score (genetic correlations ranged from -0.47 to 0.32 and from 0.25 to 0.52). Genetic predisposition to an increased incidence of embryo loss was associated with both an inferior uterine score (0.24) and inferior genetic merit for traditional reproductive traits (genetic correlations ranged from -0.52 to -0.42 and from 0.33 to 0.80). The results from the present study indicate that selection based on traditional reproductive traits, such as calving interval or days open, resulted in improved genetic merit of all the detailed reproductive traits evaluated in this study. Additionally, greater accuracy of selection for calving interval is expected for a relatively small progeny group size when detailed reproductive traits are included in a multitrait genetic evaluation.


Assuntos
Bovinos/fisiologia , Variação Genética , Reprodução , Animais , Bovinos/genética , Feminino , Modelos Lineares , Ovário/diagnóstico por imagem , Ultrassonografia/veterinária , Útero/diagnóstico por imagem
14.
J Dairy Sci ; 98(6): 4225-39, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25795489

RESUMO

The objective of this study was to develop an index to rank dairy females on expected profit for the remainder of their lifetime, taking cognizance of both additive and nonadditive genetic merit, permanent environmental effects, and current states of the animal including the most recent calving date and cow parity. The cow own worth (COW) index is intended to be used for culling the expected least profitable females in a herd, as well as inform purchase and pricing decisions for trading of females. The framework of the COW index consisted of the profit accruing from (1) the current lactation, (2) future lactations, and (3) net replacement cost differential. The COW index was generated from estimated performance values (sum of additive genetic merit, nonadditive genetic merit, and permanent environmental effects) of traits, their respective net margin values, and transition probability matrices for month of calving, survival, and somatic cell count; the transition matrices were to account for predicted change in a cow's state in the future. Transition matrices were generated from 3,156,109 lactation records from the Irish national database between the years 2010 and 2013. Phenotypic performance records for 162,981 cows in the year 2012 were used to validate the COW index. Genetic and permanent environmental effects (where applicable) were available for these cows from the 2011 national genetic evaluations and used to calculate the COW index and their national breeding index values (includes only additive genetic effects). Cows were stratified per quartile within herd, based on their COW index value and national breeding index value. The correlation between individual animal COW index value and national breeding index value was 0.65. Month of calving of the cow in her current lactation explained 18% of the variation in the COW index, with the parity of the cow explaining an additional 3 percentage units of the variance in the COW index. Females ranking higher on the COW index yielded more milk and milk solids and calved earlier in the calving season than their lower ranking contemporaries. The difference in phenotypic performance between the best and worst quartiles was larger for cows ranked on COW index than cows ranked on the national breeding index. The COW index is useful to rank females before culling or purchasing decisions on expected profit and is complementary to the national breeding index, which identifies the most suitable females for breeding replacements.


Assuntos
Bovinos/fisiologia , Indústria de Laticínios/economia , Indústria de Laticínios/métodos , Animais , Cruzamento , Bovinos/genética , Feminino , Lactação , Longevidade , Leite/metabolismo , Paridade , Gravidez , Reprodução , Estações do Ano
15.
Anim Genet ; 43(1): 81-7, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22221028

RESUMO

The regulation of the bioavailability of insulin-like growth factors (IGFs) is critical for normal mammalian growth and development. The imprinted insulin-like growth factor 2 receptor gene (IGF2R) encodes a transmembrane protein receptor that acts to sequester and degrade excess circulating insulin-like growth factor 2 (IGF-II) - a potent foetal mitogen - and is considered an important inhibitor of growth. Consequently, IGF2R may serve as a candidate gene underlying important growth- and body-related quantitative traits in domestic mammalian livestock. In this study, we have quantified genotype-phenotype associations between three previously validated intronic bovine IGF2R single nucleotide polymorphisms (SNPs) (IGF2R:g.64614T>C, IGF2R:g.65037T>C and IGF2R:g.86262C>T) and a range of performance traits in 848 progeny-tested Irish Holstein-Friesian artificial insemination sires. Notably, all three polymorphisms analysed were associated (P ≤ 0.05) with at least one of a number of performance traits related to animal body size: angularity, body depth, chest width, rump width, and animal stature. In addition, the C-to-T transition at the IGF2R:g.65037T>C polymorphism was positively associated with cow carcass weight and angularity. Correction for multiple testing resulted in the retention of two genotype-phenotype associations (animal stature and rump width). None of the SNPs analysed were associated with any of the milk traits examined. Analysis of pairwise r(2) measures of linkage disequilibrium between all three assayed SNPs ranged between 0.41 and 0.79, suggesting that some of the observed SNP associations with performance may be independent. To our knowledge, this is one of the first studies demonstrating associations between IGF2R polymorphisms and growth- and body-related traits in cattle. These results also support the increasing body of evidence that imprinted genes harbour polymorphisms that contribute to heritable variation in phenotypic traits in domestic livestock species.


Assuntos
Tamanho Corporal , Bovinos/genética , Impressão Genômica , Polimorfismo de Nucleotídeo Único , Receptor IGF Tipo 2/genética , Animais , Feminino , Masculino
16.
J Dairy Sci ; 95(3): 1310-22, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22365213

RESUMO

The objective of the present study was to characterize the phenotypic performance of cows with similar proportions of Holstein genetics, similar genetic merit for milk production traits, but with good (Fert+) or poor (Fert-) genetic merit for fertility traits. Specifically, we tested the hypothesis that cows with a negative estimated breeding value for calving interval would have superior fertility performance and would have detectable differences in body reserve mobilization and circulating concentrations of metabolic hormones and metabolites compared with cows that had a positive estimated breeding value for calving interval. For the duration of the study, cows were managed identically as a single herd in a typical grass-based, spring-calving production system. A total of 80 lactation records were available from 26 Fert+ and 26 Fert- cows over 2 consecutive years (2008 and 2009). During yr 1, cows were monitored during a 20-wk breeding season to evaluate reproductive performance. Milk production, body condition score (scale 1 to 5), body weight, grass dry matter intake, energy balance, and metabolic hormone and metabolite data were collected during both years. The Fert+ cows had greater daily milk yield (19.5 vs. 18.7 kg/d), shorter interval from calving to conception (85.6 vs. 113.8 d), and fewer services per cow (1.78 vs. 2.83). No difference between groups in grass dry matter intake, energy balance, or body weight was observed. The Fert+ cows maintained greater BCS during mid (2.84 vs. 2.74 units) and late lactation (2.82 vs. 2.73 units). Circulating concentrations of insulin-like growth factor-I were greater throughout the gestation-lactation cycle in Fert+ cows (148.3 vs. 128.2 ng/mL). The Fert+ cows also had greater circulating concentrations of insulin during the first 4 wk of lactation (1.71 vs. 1.24 µIU/mL). Analysis of records from national herd data verified the association between genetic merit for fertility traits and phenotypic reproductive performance; Fert+ cows (n = 2,436) required 11.1 d less to recalve than did Fert- cows (n = 1,388), and the percentage of cows that successfully calved for the second time within 365 and 400 d of the first calving was 8 and 13% greater for Fert+ compared with Fert- cows, respectively. These results demonstrate that genetic merit for fertility traits had a pronounced effect on reproductive efficiency, BCS profiles, and circulating concentrations of insulin-like growth factor-I.


Assuntos
Bovinos/genética , Fertilidade/genética , Lactação/genética , Característica Quantitativa Herdável , Animais , Peso Corporal , Cruzamento/métodos , Indústria de Laticínios/métodos , Metabolismo Energético , Feminino , Leite/metabolismo , Reprodução/genética
17.
JDS Commun ; 3(1): 32-37, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36340681

RESUMO

Attention is increasing on both cow size and body weight (BW) as energy sinks and thus as contributors to differences in production efficiency among cows. What is not currently clear, however, is how cow BW affects the increase in yield per cow per unit increase in genetic merit for milk production. This void in knowledge was filled in the present study using BW data from 20,470 lactations on 16,980 Holstein-Friesian dairy cows stratified into 4 groups on BW adjusted for differences in parity, days in milk, and body condition score. Using linear mixed models that adjusted for nuisance factors, cow phenotypic milk production variables were regressed on estimates of parental average genetic merit for the respective trait within each stratum of BW defined within contemporary group; estimates of genetic merit were from the national genetic evaluations. Both the intercept and linear regression coefficients on genetic merit were compared across BW strata. The intercepts representing the mean phenotypic yield at a genetic merit of zero differed among BW strata; irrespective of yield trait, the least squares means yield per BW stratum increased numerically as cows got heavier, although not every stepwise increase in BW stratum was associated with significantly greater yield compared with the previous (lighter) stratum. Nonetheless, the yield of the cows in the lightest of the 4 strata was always less than that of the heaviest 2 strata; relative to the lightest stratum, cows in the heaviest BW stratum produced only 3 to 4% more yield. Furthermore, the association between phenotypic yield and its respective measures of genetic merit differed by BW stratum; the response to selection for each of the yield traits was 15 to 23% greater for the heaviest stratum of cows compared with their contemporaries in the lightest stratum. Although BW stratum was associated with mean fat and protein concentration after adjusting for differences in genetic merit for fat and protein concentration, the association did not differ by BW stratum for either fat or protein concentration. The effect of BW on efficiency should consider the association between BW and not only mean phenotypic yield at a given genetic merit, but also how the differences in yield diverge as genetic merit increases.

18.
JDS Commun ; 3(5): 377, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36342892

RESUMO

[This corrects the article DOI: 10.3168/jdsc.2021-0115.].

19.
JDS Commun ; 2(5): 257-261, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36338390

RESUMO

The growing awareness and scrutiny of the management of young dairy calves, especially male calves, necessitates a support tool to aid in the planning of resource allocation on dairy farms. There is a desire among some vendors for a minimum calf weight when purchasing young dairy bull calves. Hence, the objective of the present study was to investigate whether live weight of young calves (approximately 10-50 d old) can be predicted using readily accessible animal-level features, especially features that may be available in advance of birth. A multiple linear regression mixed model was developed with the live weight of 602 dairy bull calves aged between 10 and 42 d as the dependent variable; the age at which an animal is predicted to reach a predefined live weight was then estimated based on the model regression coefficients. Fixed effects included in the multiple regression model were dam parity, gestation length, and parental average genetic merit for relevant traits available in Ireland; namely, birth weight, birth size, and carcass weight. Herd of origin was included as a random effect, with all calves having been sold directly from the farm of birth. Live weight data were recorded at the point of sale when calves were, on average, 26 d old with a mean live weight of 56.6 kg. Animals were randomly assigned to 10 separate (i.e., folds) cross-validation data sets without replacement (i.e., each fold consisted of a different 10% of the data to test the model, with the remaining 90% of data being used to train the model) to quantify the accuracy of prediction. Across all data, the correlation between actual and predicted live weight was 0.76; the regression coefficient of actual live weight on predicted live weight across all data was 0.99. The root mean squared error of prediction varied from 4.40 to 6.66 kg per fold. Across all data, the root mean squared error was 5.61 kg, implying that 68% of live weight predictions were within 5.61 kg of the actual live weight. Given the potential availability of all model features in advance of birth (gestation length can be predicted from ultrasound examination of the pregnant uterus, although substituting parental average genetic merit for gestation length had minimal effect on model performance), predictions can be integrated into a dairy farm decision support tool to aid in the management of labor and infrastructure resources to achieve minimum live weight specifications before sale.

20.
Animal ; 15(2): 100077, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33573978

RESUMO

While breeding indexes exist globally to identify candidate parents of the next generation, fewer tools exist that provide guidance on the expected monetary value of young animals. The objective of the present study was therefore to develop the framework for a cattle decision-support tool which incorporates both the genetic and non-genetic information of an animal and, in doing so, better predict the potential market value of an animal, whatever the age. Two novel monetary indexes were constructed and their predictive ability of carcass value was compared to that of the Irish national Terminal breeding index, typical of other terminal indexes used globally. A constructed Harvest index was composed of three carcass-related traits [i.e., 1) carcass weight, 2) carcass conformation and 3) carcass fat, each weighted by their respective economic value] and aimed at purchasers of animals close to harvest; the second index, termed the Calf index, also included docility and feed intake (weighted by their respective economic value), thus targeting purchasers of younger calves for growing (and eventually harvesting). Genetic and non-genetic fixed and random effect model solutions from the Irish national genetic evaluations underpinned all indexes. The two novel indexes were formulated using three alternative estimates of an animal's total merit for comparative purposes: 1) an index based solely on the animal's breed solutions, 2) an index which also included within-breed animal differences, and 3) an index which, as well as considering additive and non-additive genetic effects, also included non-genetic effects (referred to as production values [PVs]). As more information (i.e., within breed effects and subsequently non-genetic effects) was included in the total merit estimate, the correlations strengthened between the two proposed indexes and the animal's calculated carcass market value; the correlation coefficients almost doubled in strength when total merit was based on PV-based estimates as compared to the breed solutions alone. Including phenotypic live-weight data, collected during the animal's life, strengthened the predictive ability of the indexes further. Based on the results presented, the proposed indexes may fill the void in decision support when purchasing or selling cattle. In addition, given the dynamic nature of indexes, they have the potential to be updated in real-time as information becomes available.


Assuntos
Comportamento do Consumidor , Ingestão de Alimentos , Animais , Bovinos/genética , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA