Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 147(2): 1066, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32113259

RESUMO

In seismology, the depth of a near-surface source is hard to estimate in the absence of local stations. The depth-yield trade-off leads to significant uncertainties in the source's depth and strength estimations. Long-range infrasound propagation from an underwater or underground source is very sensitive to variations in the source's depth and strength. This characteristic is employed in an infrasound based inversion for the submerged source parameters. First, a Bayesian inversion scheme is tested under the variations of the number of stations, the signal's frequency band, and the signal-to-noise ratio (SNR). Second, an ensemble of realistic perturbed atmospheric profiles is used to investigate the effect of atmospheric uncertainties on the inversion results. Results show that long-range infrasound signals can be used to estimate the depth and strength of an underwater source. Using a broadband signal proved to be a fundamental element to obtain the real source parameters, whereas the SNR was secondary. Multiple station inversions perform better than one-station inversions; however, variations in their position can lead to source strength estimations with uncertainties up to 50%. Regardless of the number of stations, their positions, and SNRs, all of the estimated depths were within 10% from the real source depth.

2.
J Acoust Soc Am ; 147(2): 1264, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32113287

RESUMO

In seismology and ocean acoustics, the interface with the atmosphere is typically represented as a free surface. Similarly, these interfaces are considered as a rigid surface for infrasound propagation. This implies that seismic or acoustic waves are not transmitted into the atmosphere from subsurface sources, and vice versa. Nevertheless, infrasound generated by subsurface sources has been observed. In this work, seismo-acoustic modeling of infrasound propagation from underwater and underground sources will be presented. The fast field program (FFP) is used to model the seismo-acoustic coupling between the solid earth, the ocean, and the atmosphere under the variation of source and media parameters. The FFP model allows for a detailed analysis of the seismo-acoustic coupling mechanisms in frequency-wavenumber space. A thorough analysis of the coupling mechanisms reveals that evanescent wave coupling and leaky surface waves are the main energy contributors to long-range infrasound propagation. Moreover, it is found that source depth affects the relative amplitude of the tropospheric and stratospheric phases, which allows for source depth estimation in the future.

3.
J Acoust Soc Am ; 146(2): 973, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31472585

RESUMO

The receiver-to-source backazimuth of atmospheric infrasound signals is biased when cross-winds are present along the propagation path. Infrasound from 598 surface explosions from over 30 years in northern Finland is measured with high spatial resolution on an array 178 km almost due North. The array is situated in the classical shadow-zone distance from the explosions. However, strong infrasound is almost always observed, which is most plausibly due to partial reflections from stratospheric altitudes. The most probable propagation paths are subject to both tropospheric and stratospheric cross-winds, and the wave-propagation modelling in this study yields good correspondence between the observed backazimuth deviation and cross-winds from the European Centre for Medium-Range Weather Forecasts Reanalysis (ERA)-Interim reanalysis product. This study demonstrates that atmospheric cross-winds can be estimated directly from infrasound data using propagation time and backazimuth deviation observations. This study finds these cross-wind estimates to be in good agreement with the ERA-Interim reanalysis.

4.
J Acoust Soc Am ; 137(4): 2124-36, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25920862

RESUMO

The International Monitoring System includes a hydro-acoustic part to verify the Comprehensive Nuclear-Test-Ban Treaty. Besides explosive signals, monitoring stations also detect acoustic waves from earthquakes that travel through the SOund Fixing And Ranging (SOFAR) channel. The travel times of such detections are listed in the Reviewed Event Bulletin, which is statistically evaluated for the stations located in the Pacific, Indian, and Atlantic Oceans. The celerities of ridge earthquakes are calculated to build up a homogeneous data-set, based on similar source mechanisms. The celerity is defined as the epicentral distance divided by the travel time. The global characteristics of these celerities can be well understood in terms of temperature variations in the SOFAR channel. A detailed velocity profile has been retrieved for the Atlantic Ocean where large differences (14 m/s) are found between the southern and northern parts of the basin. Propagation modeling with normal modes supports these findings, which shows that the celerity gives an estimate of the sound speed in the SOFAR channel. These results compare remarkably well with those from active experiments, showing the ability of passively probing the SOFAR channel with hydro-acoustic waves from earthquake sources.

5.
J Acoust Soc Am ; 137(4): 1846-56, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25920837

RESUMO

The ideal case of a deep and well-formed stratospheric duct for long range infrasound propagation in the absence of tropospheric ducting is considered. A canonical form, that of a pair of arrivals, for ground returns of impulsive signals in a stratospheric duct is determined. The canonical form is derived from the geometrical acoustics approximation, and is validated and extended through full wave modeling. The full caustic structure of the field of ray paths is found and used to determine phase relations between the contributions to the wavetrain from different propagation paths. Finally, comparison with data collected from the 2005 fuel gas depot explosion in Buncefield, England is made. The correspondence between the theoretical results and the observations is shown to be quite good.

6.
J Acoust Soc Am ; 134(4): 2660-8, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24116404

RESUMO

The atmospheric wind and temperature can be estimated through the traveltimes of infrasound between pairs of receivers. The traveltimes can be obtained by infrasonic interferometry. In this study, the theory of infrasonic interferometry is verified and applied to modeled stratospherically refracted waves. Synthetic barograms are generated using a raytracing model and taking into account atmospheric attenuation, geometrical spreading, and phase shifts due to caustics. Two types of source wavelets are implemented for the experiments: blast waves and microbaroms. In both numerical experiments, the traveltimes between the receivers are accurately retrieved by applying interferometry to the synthetic barograms. It is shown that microbaroms can be used in practice to obtain the traveltimes of infrasound through the stratosphere, which forms the basis for retrieving the wind and temperature profiles.


Assuntos
Acústica , Simulação por Computador , Interferometria , Análise Numérica Assistida por Computador , Som , Temperatura , Vento , Acústica/instrumentação , Desenho de Equipamento , Explosões , Interferometria/instrumentação , Movimento (Física) , Espectrografia do Som , Fatores de Tempo , Transdutores
7.
Science ; 377(6601): 95-100, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35549311

RESUMO

The 15 January 2022 climactic eruption of Hunga volcano, Tonga, produced an explosion in the atmosphere of a size that has not been documented in the modern geophysical record. The event generated a broad range of atmospheric waves observed globally by various ground-based and spaceborne instrumentation networks. Most prominent was the surface-guided Lamb wave (≲0.01 hertz), which we observed propagating for four (plus three antipodal) passages around Earth over 6 days. As measured by the Lamb wave amplitudes, the climactic Hunga explosion was comparable in size to that of the 1883 Krakatau eruption. The Hunga eruption produced remarkable globally detected infrasound (0.01 to 20 hertz), long-range (~10,000 kilometers) audible sound, and ionospheric perturbations. Seismometers worldwide recorded pure seismic and air-to-ground coupled waves. Air-to-sea coupling likely contributed to fast-arriving tsunamis. Here, we highlight exceptional observations of the atmospheric waves.


Assuntos
Atmosfera , Som , Erupções Vulcânicas , Tonga
8.
J Acoust Soc Am ; 130(1): 33-41, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21786875

RESUMO

The study of infrasound is experiencing a renaissance since it was chosen as a verification technique for the Comprehensive Nuclear-Test-Ban Treaty. Source identification is one of the main topics of research which involves detailed knowledge on the source time function, the atmosphere as medium of propagation, and the measurement system. Applications are also foreseen in using infrasound as passive probe for the upper atmosphere, taking the field beyond its monitoring application. Infrasound can be conveniently measured with differential microbarometers. An accurate description of the instrument response is an essential need to be able to attribute the recorded infrasound to a certain source or atmospheric properties. In this article, a detailed treatment is given of the response of a differential microbarometer to acoustic signals. After an historical introduction, a basic model for the frequency response is derived with its corresponding poles and zeros. The results are explained using electric analogs. In addition, thermal conduction is added to the model in order to capture the transition between adiabatic and isothermal behavior. Also discussed are high-frequency effects and the effect of external temperature variations. Eventually, the design parameters for differential microbarometers are derived.


Assuntos
Acústica/instrumentação , Som , Transdutores , Desenho de Equipamento , Gravitação , Modelos Teóricos , Movimento (Física) , Guerra Nuclear/prevenção & controle , Pressão , Processamento de Sinais Assistido por Computador , Temperatura , Condutividade Térmica , Fatores de Tempo
9.
Science ; 342(6162): 1069-73, 2013 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-24200813

RESUMO

The asteroid impact near the Russian city of Chelyabinsk on 15 February 2013 was the largest airburst on Earth since the 1908 Tunguska event, causing a natural disaster in an area with a population exceeding one million. Because it occurred in an era with modern consumer electronics, field sensors, and laboratory techniques, unprecedented measurements were made of the impact event and the meteoroid that caused it. Here, we document the account of what happened, as understood now, using comprehensive data obtained from astronomy, planetary science, geophysics, meteorology, meteoritics, and cosmochemistry and from social science surveys. A good understanding of the Chelyabinsk incident provides an opportunity to calibrate the event, with implications for the study of near-Earth objects and developing hazard mitigation strategies for planetary protection.


Assuntos
Acidentes , Ar , Explosões , Meteoroides , Federação Russa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA