Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Am J Kidney Dis ; 63(1): 113-8, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24183111

RESUMO

We report the case of a 69-year-old man who presented with acute kidney injury in the setting of community-acquired Clostridium difficile-associated diarrhea and biopsy-proven acute oxalate nephropathy. We discuss potential mechanisms, including increased colonic permeability to oxalate. We conclude that C difficile-associated diarrhea is a potential cause of acute oxalate nephropathy.


Assuntos
Oxalato de Cálcio/metabolismo , Clostridioides difficile , Colo/metabolismo , Diarreia , Hidratação/métodos , Necrose Tubular Aguda , Metronidazol/administração & dosagem , Doença Aguda , Idoso , Anti-Infecciosos/administração & dosagem , Biópsia , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/isolamento & purificação , Diarreia/complicações , Diarreia/microbiologia , Diarreia/fisiopatologia , Humanos , Rim/patologia , Testes de Função Renal , Necrose Tubular Aguda/diagnóstico , Necrose Tubular Aguda/etiologia , Necrose Tubular Aguda/fisiopatologia , Necrose Tubular Aguda/terapia , Masculino , Permeabilidade , Probióticos/administração & dosagem , Resultado do Tratamento
2.
RNA ; 17(4): 652-64, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21282348

RESUMO

Synthesis of the poly(A) tail of mRNA in Saccharomyces cerevisiae requires recruitment of the polymerase Pap1 to the 3' end of cleaved pre-mRNA. This is made possible by the tethering of Pap1 to the Cleavage/Polyadenylation Factor (CPF) by Fip1. We have recently reported that Fip1 is an unstructured protein in solution, and proposed that it might maintain this conformation as part of CPF, when bound to Pap1. However, the role that this feature of Fip1 plays in 3' end processing has not been investigated. We show here that Fip1 has a flexible linker in the middle of the protein, and that removal or replacement of the linker affects the efficiency of polyadenylation. However, the point of tethering is not crucial, as a fusion protein of Pap1 and Fip1 is fully functional in cells lacking genes encoding the essential individual proteins, and directly tethering Pap1 to RNA increases the rate of poly(A) addition. We also find that the linker region of Fip1 provides a platform for critical interactions with other parts of the processing machinery. Our results indicate that the Fip1 linker, through its flexibility and protein/protein interactions, allows Pap1 to reach the 3' end of the cleaved RNA and efficiently initiate poly(A) addition.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Poliadenilação , RNA Mensageiro/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Sequência de Bases , Proteínas Associadas a Pancreatite , Estrutura Terciária de Proteína , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Poliadenilação e Clivagem de mRNA/química , Fatores de Poliadenilação e Clivagem de mRNA/genética
3.
Biochemistry ; 47(26): 6859-69, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18537269

RESUMO

In yeast, the mRNA processing enzyme poly(A) polymerase is tethered to the much larger 3'-end processing complex via Fip1, a 36 kDa protein of unknown structure. We report the 2.6 A crystal structure of yeast poly(A) polymerase in complex with a peptide containing residues 80-105 of Fip1. The Fip1 peptide binds to the outside surface of the C-terminal domain of the polymerase. On the basis of this structure, we designed a mutant of the polymerase (V498Y, C485R) that is lethal to yeast. The mutant is unable to bind Fip1 but retains full polymerase activity. Fip1 is found in all eukaryotes and serves to connect poly(A) polymerase to pre-mRNA processing complexes in yeast, plants, and mammals. However, the Fip1 sequence is highly divergent, and residues on both Pap1 and Fip1 at the observed interaction surface are poorly conserved. Herein we demonstrate using analytical ultracentrifugation, circular dichroism, proteolytic studies, and other techniques that, in the absence of Pap1, Fip1 is largely, if not completely, unfolded. We speculate that flexibility may be important for Fip1's function as a molecular scaffold.


Assuntos
Peptídeos/química , Peptídeos/metabolismo , Polinucleotídeo Adenililtransferase/química , Polinucleotídeo Adenililtransferase/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Fatores de Poliadenilação e Clivagem de mRNA/química , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Sequência de Aminoácidos , Fenômenos Biofísicos , Biofísica , Sequência Conservada , Cristalografia por Raios X , Humanos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutação/genética , Proteínas Associadas a Pancreatite , Polinucleotídeo Adenililtransferase/genética , Ligação Proteica , Estrutura Quaternária de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Fatores de Poliadenilação e Clivagem de mRNA/genética
4.
FEBS Lett ; 586(8): 1173-8, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22575652

RESUMO

Addition of poly(A) to the 3' ends of cleaved pre-mRNA is essential for mRNA maturation and is catalyzed by Pap1 in yeast. We have previously shown that a non-viable Pap1 mutant lacking the first 18 amino acids is fully active for polyadenylation of oligoA, but defective for pre-mRNA polyadenylation, suggesting that interactions at the N-terminus are important for enzyme function in the processing complex. We have now identified proteins that interact specifically with this region. Cft1 and Pta1 are subunits of the cleavage/polyadenylation factor, in which Pap1 resides, and Nab6 and Sub1 are nucleic-acid binding proteins with known links to 3' end processing. Our results suggest a novel mechanism for controlling Pap1 activity, and possible models invoking these newly-discovered interactions are discussed.


Assuntos
Poli A/metabolismo , Polinucleotídeo Adenililtransferase/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Fatores de Poliadenilação e Clivagem de mRNA/química , Proteínas Associadas a Pancreatite , Polinucleotídeo Adenililtransferase/genética , Polinucleotídeo Adenililtransferase/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
6.
Nat Struct Mol Biol ; 15(12): 1272-7, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19029894

RESUMO

ATP-dependent chromatin-remodeling complexes, such as RSC, can reposition, evict or restructure nucleosomes. A structure of a RSC-nucleosome complex with a nucleosome determined by cryo-EM shows the nucleosome bound in a central RSC cavity. Extensive interaction of RSC with histones and DNA seems to destabilize the nucleosome and lead to an overall ATP-independent rearrangement of its structure. Nucleosomal DNA appears disordered and largely free to bulge out into solution as required for remodeling, but the structure of the RSC-nucleosome complex indicates that RSC is unlikely to displace the octamer from the nucleosome to which it is bound. Consideration of the RSC-nucleosome structure and published biochemical information suggests that ATP-dependent DNA translocation by RSC may result in the eviction of histone octamers from adjacent nucleosomes.


Assuntos
Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/ultraestrutura , Nucleossomos/química , Nucleossomos/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Fatores de Transcrição/química , Fatores de Transcrição/ultraestrutura , Microscopia Crioeletrônica , Processamento de Imagem Assistida por Computador , Modelos Moleculares , Estrutura Quaternária de Proteína
7.
Mol Cell ; 12(4): 1003-13, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14580350

RESUMO

The structure of an RNA polymerase II/general transcription factor TFIIF complex was determined by cryo-electron microscopy and single particle analysis. Density due to TFIIF was not concentrated in one area but rather was widely distributed across the surface of the polymerase. The largest subunit of TFIIF interacted with the dissociable Rpb4/Rpb7 polymerase subunit complex and with the mobile "clamp." The distribution of the second largest subunit of TFIIF was very similar to that previously reported for the sigma subunit in the bacterial RNA polymerase holoenzyme, consisting of a series of globular domains extending along the polymerase active site cleft. This result indicates that the second TFIIF subunit is a true structural homolog of the bacterial sigma factor and reveals an important similarity of the transcription initiation mechanism between bacteria and eukaryotes. The structure of the RNAPII/TFIIF complex suggests a model for the organization of a minimal transcription initiation complex.


Assuntos
RNA Polimerase II/química , RNA Polimerase II/ultraestrutura , Fatores de Transcrição TFII/química , Fatores de Transcrição TFII/ultraestrutura , Sítio de Iniciação de Transcrição/fisiologia , Animais , Evolução Molecular , Humanos , Substâncias Macromoleculares , Microscopia Eletrônica , Modelos Moleculares , Estrutura Molecular , Filogenia , Regiões Promotoras Genéticas/fisiologia , Subunidades Proteicas/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Leveduras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA