Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
BMC Biol ; 12: 5, 2014 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-24468049

RESUMO

BACKGROUND: The metacestode of the tapeworm Echinococcus multilocularis is the causative agent of alveolar echinococcosis, a lethal zoonosis. Infections are initiated through establishment of parasite larvae within the intermediate host's liver, where high concentrations of insulin are present, followed by tumour-like growth of the metacestode in host organs. The molecular mechanisms determining the organ tropism of E. multilocularis or the influences of host hormones on parasite proliferation are poorly understood. RESULTS: Using in vitro cultivation systems for parasite larvae we show that physiological concentrations (10 nM) of human insulin significantly stimulate the formation of metacestode larvae from parasite stem cells and promote asexual growth of the metacestode. Addition of human insulin to parasite larvae led to increased glucose uptake and enhanced phosphorylation of Echinococcus insulin signalling components, including an insulin receptor-like kinase, EmIR1, for which we demonstrate predominant expression in the parasite's glycogen storage cells. We also characterized a second insulin receptor family member, EmIR2, and demonstrated interaction of its ligand binding domain with human insulin in the yeast two-hybrid system. Addition of an insulin receptor inhibitor resulted in metacestode killing, prevented metacestode development from parasite stem cells, and impaired the activation of insulin signalling pathways through host insulin. CONCLUSIONS: Our data indicate that host insulin acts as a stimulant for parasite development within the host liver and that E. multilocularis senses the host hormone through an evolutionarily conserved insulin signalling pathway. Hormonal host-parasite cross-communication, facilitated by the relatively close phylogenetic relationship between E. multilocularis and its mammalian hosts, thus appears to be important in the pathology of alveolar echinococcosis. This contributes to a closer understanding of organ tropism and parasite persistence in larval cestode infections. Furthermore, our data show that Echinococcus insulin signalling pathways are promising targets for the development of novel drugs.


Assuntos
Echinococcus multilocularis/crescimento & desenvolvimento , Echinococcus multilocularis/metabolismo , Insulina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Echinococcus multilocularis/efeitos dos fármacos , Echinococcus multilocularis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Proteínas de Helminto/química , Proteínas de Helminto/metabolismo , Humanos , Imuno-Histoquímica , Hibridização In Situ , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/metabolismo , Estágios do Ciclo de Vida/efeitos dos fármacos , Dados de Sequência Molecular , Naftalenos/farmacologia , Organofosfonatos/farmacologia , Parasitos/efeitos dos fármacos , Parasitos/genética , Parasitos/crescimento & desenvolvimento , Fosforilação/efeitos dos fármacos , Estrutura Terciária de Proteína , Receptor de Insulina/química , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Receptor de Insulina/ultraestrutura , Homologia de Sequência de Aminoácidos , Transdução de Sinais/genética , Técnicas do Sistema de Duplo-Híbrido
2.
FASEB J ; 26(1): 29-39, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21908716

RESUMO

Leishmania pathogenesis is primarily studied using the disease-inducing promastigote stage of Leishmania major. Despite many efforts, all attempts so far have failed to culture the disease-relevant multiplying amastigote stage of L. major. Here, we established a stably growing axenic L. major amastigote culture system that was characterized genetically, morphologically, and by stage-specific DsRed protein expression. We found parasite stage-specific disease development in resistant C57BL/6 mice. Human neutrophils, as first host cells for promastigotes, do not take up amastigotes. In human macrophages, we observed an amastigote-specific complement receptor 3-mediated, endocytotic entry mechanism, whereas promastigotes are taken up by complement receptor 1-mediated phagocytosis. Promastigote infection of macrophages induced the inflammatory mediators TNF, CCL3, and CCL4, whereas amastigote infection was silent and resulted in significantly increased parasite numbers: from 7.1 ± 1.4 (after 3 h) to 20.1 ± 7.9 parasites/cell (after 96 h). Our study identifies Leishmania stage-specific disease development, host cell preference, entry mechanism, and immune evasion. Since the amastigote stage is the disease-propagating form found in the infected mammalian host, the newly developed L. major axenic cultures will serve as an important tool in better understanding the amastigote-driven immune response in leishmaniasis.


Assuntos
Leishmania major/imunologia , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/parasitologia , Macrófagos/parasitologia , Neutrófilos/parasitologia , Animais , Cultura Axênica/métodos , Endocitose/imunologia , Feminino , Expressão Gênica/fisiologia , Interações Hospedeiro-Parasita/imunologia , Humanos , Leishmania major/genética , Leishmania major/crescimento & desenvolvimento , Macrófagos/imunologia , Macrófagos/ultraestrutura , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Varredura , Neutrófilos/imunologia , Neutrófilos/ultraestrutura , Fagocitose/imunologia
3.
J Cell Biochem ; 112(6): 1630-42, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21328613

RESUMO

As the primary mediators of lipophilic and steroid hormone signalling, the family of nuclear receptors (NRs) plays a central role in the regulation of metazoan development. Lipophilic hormones are also thought to be important players in the molecular interaction between larval cestodes and their hosts but no member of the NR family has yet been characterised in this group of parasites. In this work, we provide for the first time evidence for the presence of NRs in cestodes of the genus Echinococcus. By bioinformatic analyses, we identified a set of 17 NRs in the genomes of E. multilocularis and E. granulosus which broadly overlapped with the set of NRs that is expressed by schistosomes, but also contained several members that are unique to cestodes. One of these receptors, EmNHR1, displayed structural homologies to the DAF-12/HR-96 subfamily of NRs that regulates cholesterol homeostasis and longevity in metazoans. By RT-PCR analyses, we demonstrate that the EmNHR1 encoding gene is expressed in all Echinococcus larval stages that are involved in the infection of the intermediate host. By yeast two-hybrid analyses, we further demonstrate cross-communication between EmNHR1 and TGF-ß signalling pathways in Echinococcus and that mammalian serum contains a ligand that induces homodimerisation of the EmNHR1 ligand-binding domain. EmNHR1 could thus play an important role in hormonal host-parasite cross-communication mechanisms during an infection. On the basis of our results, further investigations into the role of NR signalling in cestode development and host-parasite interaction will be greatly facilitated.


Assuntos
Echinococcus multilocularis/metabolismo , Proteínas de Helminto/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Biologia Computacional , Echinococcus multilocularis/genética , Echinococcus multilocularis/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Helminto/genética , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Ligação Proteica , Receptores Citoplasmáticos e Nucleares/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
PLoS Negl Trop Dis ; 13(3): e0006959, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30849083

RESUMO

BACKGROUND: Alveolar echinococcosis (AE) is a lethal zoonosis caused by the metacestode larva of the tapeworm Echinococcus multilocularis. The infection is characterized by tumour-like growth of the metacestode within the host liver, leading to extensive fibrosis and organ-failure. The molecular mechanisms of parasite organ tropism towards the liver and influences of liver cytokines and hormones on parasite development are little studied to date. METHODOLOGY/PRINCIPAL FINDINGS: We show that the E. multilocularis larval stage expresses three members of the fibroblast growth factor (FGF) receptor family with homology to human FGF receptors. Using the Xenopus expression system we demonstrate that all three Echinococcus FGF receptors are activated in response to human acidic and basic FGF, which are present in the liver. In all three cases, activation could be prevented by addition of the tyrosine kinase (TK) inhibitor BIBF 1120, which is used to treat human cancer. At physiological concentrations, acidic and basic FGF significantly stimulated the formation of metacestode vesicles from parasite stem cells in vitro and supported metacestode growth. Furthermore, the parasite's mitogen activated protein kinase signalling system was stimulated upon addition of human FGF. The survival of metacestode vesicles and parasite stem cells were drastically affected in vitro in the presence of BIBF 1120. CONCLUSIONS/SIGNIFICANCE: Our data indicate that mammalian FGF, which is present in the liver and upregulated during fibrosis, supports the establishment of the Echinococcus metacestode during AE by acting on an evolutionarily conserved parasite FGF signalling system. These data are valuable for understanding molecular mechanisms of organ tropism and host-parasite interaction in AE. Furthermore, our data indicate that the parasite's FGF signalling systems are promising targets for the development of novel drugs against AE.


Assuntos
Echinococcus multilocularis/crescimento & desenvolvimento , Interações Hospedeiro-Parasita , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Animais , Linhagem Celular , Echinococcus multilocularis/genética , Echinococcus multilocularis/metabolismo , Fatores de Crescimento de Fibroblastos/farmacologia , Humanos , Indóis/farmacologia , Larva/efeitos dos fármacos , Larva/genética , Larva/crescimento & desenvolvimento , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Cultura Primária de Células , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/genética , Proteínas Recombinantes/farmacologia
5.
J Proteomics ; 162: 40-51, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28442449

RESUMO

The hydatid fluid (HF) that fills Echinococcus multilocularis metacestode vesicles is a complex mixture of proteins from both parasite and host origin. Here, a LC-MS/MS approach was used to compare the HF composition of E. multilocularis H95 and G8065 isolates (EmH95 and EmG8065, respectively), which present differences in terms of growth and fertility. Overall, 446 unique proteins were identified, 392 of which (88%) were from parasite origin and 54 from culture medium. At least 256 of parasite proteins were sample exclusive, and 82 of the 136 shared proteins presented differential abundance between E. multilocularis isolates. The parasite's protein repertoires in EmH95 and EmG8065 HF samples presented qualitative and quantitative differences involving antigens, signaling proteins, proteolytic enzymes, protease inhibitors and chaperones, highlighting intraspecific singularities that could be correlated to biological features of each isolate. The repertoire of medium proteins found in the HF was also differential between isolates, and the relevance of the HF exogenous protein content for the parasite's biology is discussed. The repertoires of identified proteins also provided potential molecular markers for important biological features, such as parasite growth rate and fertility, as well potential protein targets for the development of novel diagnostic and treatment strategies for alveolar echinococcosis. BIOLOGICAL SIGNIFICANCE: E. multilocularis metacestode infection of mammal hosts involve complex interactions mediated by excretory/secretory (ES) products. The hydatid fluid (HF) that fills the E. multilocularis metacestode vesicles contains complex repertoires of parasite ES products and host proteins that mediate important molecular interactions determinant for parasite survival and development, and, consequently, to the infection outcome. HF has been also extensively reported as the main source of proteins for the immunodiagnosis of echinococcosis. The performed proteomic analysis provided a comprehensive profiling of the HF protein composition of two E. multilocularis isolates. This allowed us to identify proteins of both parasite and exogenous (medium) origin, many of which present significant differential abundances between parasite isolates and may correlate to their differential biological features, including fertility and growth rate.


Assuntos
Echinococcus multilocularis/química , Proteínas de Helminto/análise , Proteômica/métodos , Animais , Biomarcadores/análise , Líquidos Corporais/química , Equinococose/diagnóstico , Equinococose/imunologia , Fertilidade , Crescimento , Proteínas de Helminto/fisiologia , Interações Hospedeiro-Parasita , Especificidade da Espécie
6.
PLoS One ; 8(6): e66898, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23776701

RESUMO

Macrophages are an important line of defence against invading pathogens. Human macrophages derived by different methods were tested for their suitability as models to investigate Listeria monocytogenes (Lm) infection and compared to macrophage-like THP-1 cells. Human primary monocytes were isolated by either positive or negative immunomagnetic selection and differentiated in the presence of granulocyte macrophage colony-stimulating factor (GM-CSF) or macrophage colony-stimulating factor (M-CSF) into pro- or anti-inflammatory macrophages, respectively. Regardless of the isolation method, GM-CSF-derived macrophages (GM-Mφ) stained positive for CD206 and M-CSF-derived macrophages (M-Mφ) for CD163. THP-1 cells did not express CD206 or CD163 following incubation with PMA, M- or GM-CSF alone or in combination. Upon infection with Lm, all primary macrophages showed good survival at high multiplicities of infection whereas viability of THP-1 was severely reduced even at lower bacterial numbers. M-Mφ generally showed high phagocytosis of Lm. Strikingly, phagocytosis of Lm by GM-Mφ was markedly influenced by the method used for isolation of monocytes. GM-Mφ derived from negatively isolated monocytes showed low phagocytosis of Lm whereas GM-Mφ generated from positively selected monocytes displayed high phagocytosis of Lm. Moreover, incubation with CD14 antibody was sufficient to enhance phagocytosis of Lm by GM-Mφ generated from negatively isolated monocytes. By contrast, non-specific phagocytosis of latex beads by GM-Mφ was not influenced by treatment with CD14 antibody. Furthermore, phagocytosis of Lactococcus lactis, Escherichia coli, human cytomegalovirus and the protozoan parasite Leishmania major by GM-Mφ was not enhanced upon treatment with CD14 antibody indicating that this effect is specific for Lm. Based on these observations, we propose macrophages derived by ex vivo differentiation of negatively selected human primary monocytes as the most suitable model to study Lm infection of macrophages.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Listeria monocytogenes/imunologia , Macrófagos/citologia , Macrófagos/metabolismo , Monócitos/citologia , Monócitos/metabolismo , Fagocitose/fisiologia , Células Cultivadas , Humanos
7.
Int J Parasitol ; 42(4): 329-39, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22370310

RESUMO

Genes for HslVU-type peptidases are found in bacteria and in a few select Eukaryota, among those such important pathogens as Plasmodium spp. and Leishmania spp. In this study, we performed replacements of all three HslV/HslU gene homologues and found one of those, HslV, to be essential for Leishmania donovani viability. The Leishmania HslV gene can also partially relieve the thermosensitive phenotype of a combined HslVU/Lon/ClpXP knockout mutant of Escherichia coli, indicating a conserved function. However, we found that the role and function of the two Leishmania HslU genes has diverged since neither of those interacts stably with HslV. The latter forms a dodecameric complex by itself and shows a punctate distribution. We conclude that whilst the basic function of HslV may be conserved in Leishmania, its organisation and interaction with its canonical complex partner HslU is not. Nevertheless, given the absence of HslV from the proteome of mammals and its essential role in Leishmania viability, HslV is a promising target for intervention.


Assuntos
Leishmania donovani/fisiologia , Peptídeo Hidrolases/metabolismo , Mapeamento de Interação de Proteínas , Proteínas de Protozoários/metabolismo , Escherichia coli/genética , Deleção de Genes , Teste de Complementação Genética , Viabilidade Microbiana , Peptídeo Hidrolases/genética , Ligação Proteica , Proteínas de Protozoários/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA