RESUMO
Tumor-infiltrating regulatory T cells (Tregs) contribute to an immunosuppressive tumor microenvironment. Despite extensive studies, the prognostic impact of tumor-infiltrating Tregs in B-cell non-Hodgkin lymphomas (B-NHLs) remains unclear. Emerging studies suggest substantial heterogeneity in the phenotypes and suppressive capacities of Tregs, emphasizing the importance of understanding Treg diversity and the need for additional markers to identify highly suppressive Tregs. Here, we applied single-cell RNA sequencing and T-cell receptor sequencing combined with high-dimensional cytometry to decipher the heterogeneity of intratumoral Tregs in diffuse large B-cell lymphoma and follicular lymphoma (FL), compared with that in nonmalignant tonsillar tissue. We identified 3 distinct transcriptional states of Tregs: resting, activated, and unconventional LAG3+FOXP3- Tregs. Activated Tregs were enriched in B-NHL tumors, coexpressed several checkpoint receptors, and had stronger immunosuppressive activity compared with resting Tregs. In FL, activated Tregs were found in closer proximity to CD4+ and CD8+ T cells than other cell types. Furthermore, we used a computational approach to develop unique gene signature matrices, which were used to enumerate each Treg subset in cohorts with bulk gene expression data. In 2 independent FL cohorts, activated Tregs was the major subset, and high abundance was associated with adverse outcome. This study demonstrates that Tregs infiltrating B-NHL tumors are transcriptionally and functionally diverse. Highly immunosuppressive activated Tregs were enriched in tumor tissue but absent in the peripheral blood. Our data suggest that a deeper understanding of Treg heterogeneity in B-NHL could open new paths for rational drug design, facilitating selective targeting to improve antitumor immunity.
Assuntos
Linfoma Folicular , Linfoma Difuso de Grandes Células B , Humanos , Linfócitos T Reguladores , Linfócitos T CD8-Positivos , Prognóstico , Imunossupressores , Microambiente TumoralRESUMO
Checkpoint blockade can reverse T-cell exhaustion and promote antitumor responses. Although blocking the PD-1 pathway has been successful in Hodgkin lymphoma, response rates have been modest in B-cell non-Hodgkin lymphoma (NHL). Coblockade of checkpoint receptors may therefore be necessary to optimize antitumor T-cell responses. Here, characterization of coinhibitory receptor expression in intratumoral T cells from different NHL types identified TIGIT and PD-1 as frequently expressed coinhibitory receptors. Tumors from NHL patients were enriched in CD8+ and CD4+ T effector memory cells that displayed high coexpression of TIGIT and PD-1, and coexpression of these checkpoint receptors identified T cells with reduced production of IFNγ, TNFα, and IL2. The suppressed cytokine production could be improved upon in vitro culture in the absence of ligands. Whereas PD-L1 was expressed by macrophages, the TIGIT ligands CD155 and CD112 were expressed by lymphoma cells in 39% and 50% of DLBCL cases and in some mantle cell lymphoma cases, as well as by endothelium and follicular dendritic cells in all NHLs investigated. Collectively, our results show that TIGIT and PD-1 mark dysfunctional T cells and suggest that TIGIT and PD-1 coblockade should be further explored to elicit potent antitumor responses in patients with NHL.
Assuntos
Linfoma não Hodgkin/patologia , Receptor de Morte Celular Programada 1/metabolismo , Receptores Imunológicos/metabolismo , Subpopulações de Linfócitos T/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Citocinas/metabolismo , Feminino , Humanos , Memória Imunológica , Ligantes , Linfoma não Hodgkin/metabolismo , Pessoa de Meia-Idade , Microambiente TumoralRESUMO
CHK1 is an important regulator of the cell cycle and DNA damage response, and its altered expression has been identified in various tumors. Chk1 inhibitors are currently being evaluated as monotherapy and as potentiators of chemotherapy in clinical settings. However, to our knowledge, no previous study has investigated either the activation status or the therapeutic potential of CHK1 targeting in vulvar cancer. Therefore, we examined the expression status of activated CHK1 forms pCHK1Ser345 , pCHK1Ser317 , pCHK1Ser296 , and pCHK1Ser280 in 294 vulvar squamous cell carcinomas (VSCC) using immunohistochemistry and analyzed their relationships with various clinicopathological variables and clinical outcome. To aid translation of preclinical studies, we also assessed cell sensitivity to the Chk1 inhibition in two vulvar cancer cell lines. Compared to the levels of pCHK1Ser345 , pCHK1Ser317 , pCHK1Ser296 , and pCHK1Ser280 in normal vulvar squamous epithelium, high nuclear pCHK1Ser345 expression was found in 57% of vulvar carcinomas, whereas low nuclear pCHK1Ser317 , pCHK1Ser296 , and pCHK1Ser280 expressions were observed in 58%, 64%, and 40% of the cases, respectively. Low levels of pCHK1Ser317 and pCHK1Ser280 in the nucleus correlated significantly with advanced tumor behaviors and aggressive features. None of pCHK1Ser345 , pCHK1Ser317 , pCHK1Ser296 , and pCHK1Ser280 forms were identified as prognostic factors. In vitro inhibition of CHK1 by small molecular inhibitors or siRNA reduced viability by inducing DNA damage and apoptosis of vulvar cancer cell lines. In summary, we conclude that cellular functions regulated by CHK1 are phosphorylation/localization-dependent and deregulation of CHK1 function occurs in VSCC and might contribute to tumorigenesis. Targeting CHK1 might represent as a useful antitumor strategy for the subgroup of VSCC harboring p53 mutations.