Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1828(5): 1384-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23376656

RESUMO

Using phase contrast and fluorescence microscopy we study the influence of the alkylphospholipid, ALP, 10-(octyloxy) decyl-2-(trimethylammonium) ethyl phosphate, ODPC, in giant unilamellar vesicles, GUVs, composed of DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine), brain sphingomyelin (SM) and cholesterol (Chol). The results show that adding 100µM ODPC (below CMC) to the outer solution of GUVs promotes DOPC membrane disruption over a period of 1h of continuous observation. On the other hand, the presence of SM and Chol in homogeneous fluid lipid bilayers protects the membrane from disruption. Interestingly, by adding 100µM ODPC to GUVs containing DOPC:SM:Chol (1:1:1), which display liquid ordered (Lo)-liquid disordered (Ld) phase coexistence, the domains rapidly disappear in less than 1min of ODPC contact with the membrane. The lipids are subsequently redistributed to liquid domains within a time course of 14-18min, reflecting that the homogenous phase was not thermodynamically stable, followed by rupture of the GUVs. A similar mechanism of action is also observed for perifosine, although to a larger extent. Therefore, the initial stage of lipid raft disruption by both ODPC and perifosine, and maybe other ALPS, by promoting lipid mixing, may be correlated with their toxicity upon neoplastic cells, since selective (dis)association of essential proteins within lipid raft microdomains must take place in the plasma membrane.


Assuntos
Glicerofosfolipídeos/química , Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Microdomínios da Membrana/química , Lipossomas Unilamelares/química , Colesterol/química , Fluidez de Membrana , Microscopia de Fluorescência , Microscopia de Contraste de Fase , Modelos Químicos , Modelos Moleculares , Fosfatidilcolinas/química , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Esfingomielinas/química , Termodinâmica
2.
Genet Mol Res ; 11(1): 775-89, 2012 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-22576836

RESUMO

Hemophilia A is the most common X-linked bleeding disorder; it is caused by deficiency of coagulation factor VIII (FVIII). Replacement therapy with rFVIII produced from human cell line is a major goal for treating hemophilia patients. We prepared a full-length recombinant FVIII (FVIII-FL), using the pMFG-P140K retroviral vector. The IRES DNA fragment was cloned upstream to the P140K gene, providing a 9.34-kb bicistronic vector. FVIII-FL cDNA was then cloned upstream to IRES, resulting in a 16.6-kb construct. In parallel, an eGFP control vector was generated, resulting in a 10.1- kb construct. The 293T cells were transfected with these constructs, generating the 293T-FVIII-FL/P140K and 293T-eGFP/P140K cell lines. In 293T-FVIII-FL/P140K cells, FVIII and P140K mRNAs levels were 4,410 (±931.7)- and 295,400 (±75,769)-fold higher than in virgin cells. In 293T-eGFP/P140K cells, the eGFP and P140K mRNAs levels were 1,501,000 (±493,700)- and 308,000 (±139,300)-fold higher than in virgin cells. The amount of FVIII-FL was 0.2 IU/mL and 45 ng/mL FVIII cells or 4.4 IU/µg protein. These data demonstrate the efficacy of the bicistronic retroviral vector expressing FVIII-FL and MGMT(P140K), showing that it could be used for producing the FVIII-FL protein in a human cell line.


Assuntos
Fator VIII/biossíntese , Vetores Genéticos , Retroviridae/genética , Fator VIII/genética , Ordem dos Genes , Células HEK293 , Humanos
3.
Biochim Biophys Acta ; 1798(9): 1714-23, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20488162

RESUMO

10-(Octyloxy) decyl-2-(trimethylammonium) ethyl phosphate (ODPC) is an alkylphospholipid that can interact with cell membranes because of its amphiphilic character. We describe here the interaction of ODPC with liposomes and its toxicity to leukemic cells with an ED-50 of 5.4, 5.6 and 2.9 microM for 72 h of treatment for inhibition of proliferation of NB4, U937 and K562 cell lines, respectively, and lack of toxicity to normal hematopoietic progenitor cells at concentrations up to 25 microM. The ED-50 for the non-malignant HEK-293 and primary human umbilical vein endothelial cells (HUVEC) was 63.4 and 60.7 microM, respectively. The critical micellar concentration (CMC) of ODPC was 200 microM. Dynamic light scattering indicated that dipalmitoylphosphatidylcholine (DPPC) liposome size was affected only above the CMC of ODPC. Differential calorimetric scanning (DCS) of liposomes indicated a critical transition temperature (T(c)) of 41.5 degrees C and an enthalpy (H) variation of 7.3 kcal mol(-1). The presence of 25 microM ODPC decreased T(c) and H to 39.3 degrees C and 4.7 kcal mol(-1), respectively. ODPC at 250 microM destabilized the liposomes (36.3 degrees C, 0.46 kcal mol(-1)). Kinetics of 5(6)-carboxyfluorescein (CF) leakage from different liposome systems indicated that the rate and extent of CF release depended on liposome composition and ODPC concentration and that above the CMC it was instantaneous. Overall, the data indicate that ODPC acts on in vitro membrane systems and leukemia cell lines at concentrations below its CMC, suggesting that it does not act as a detergent and that this effect is dependent on membrane composition.


Assuntos
Antineoplásicos/farmacologia , Membrana Celular/efeitos dos fármacos , Leucemia/tratamento farmacológico , Fosfolipídeos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Humanos , Leucemia/patologia , Lipossomos , Micelas , Termodinâmica
4.
Toxicon ; 36(12): 1927-37, 1998 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9839677

RESUMO

Crotamine, a 4.88 kDa neurotoxic protein, has been purified to apparent homogeneity from Crotalus durissus venom by gel filtration on Sephadex G-75. When injected (i.p. or s.c.) in adult male Swiss mice (20-25 g), it induced a time-dose dependent analgesic effect which was inhibited by naloxone, thus suggesting an opioid action mechanism. When compared with morphine (4 mg/kg), crotamine, even in extremely low doses (133.4 microg/kg, i.p., about 0.4% of a LD50 is approximately 30-fold more potent than morphine (w/w) as an analgesic. On a molar basis it is more than 500-fold more potent than morphine. It is also much more potent than the lower molecular weight crude fractions of the same venom. The antinociceptive effects of crotamine and morphine were assayed by the hot plate test and by the acetic acid-induced writhing method. Therefore, both central and peripheral mechanisms should be involved. Histopathological analysis of the brain, liver, skeletal muscles, stomach, lungs, spleen, heart, kidneys and small intestine of the crotamine injected mice did not show any visible lesion in any of these organs by light microscopy. Since crotamine accounted for 22% (w/w) of the desiccated venom, it was identified as its major antinociceptive low molecular weight peptide component.


Assuntos
Analgésicos/farmacologia , Venenos de Crotalídeos/farmacologia , Crotalus/fisiologia , Animais , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Masculino , Camundongos , Naloxona/farmacologia , Naloxona/toxicidade , Neurotoxinas/farmacologia , Medição da Dor
5.
Protein Expr Purif ; 21(1): 134-40, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11162398

RESUMO

Hydrolysis of phospholipids by Group II phospholipase A2 enzymes involves a nucleophilic attack on the sn-2 ester bond by the His48 residue and stabilization of the reaction intermediate by a Ca2+ ion cofactor bound to the Asp49 residue in the protein active site region. Bothropstoxin-I (BthTX-I) is a PLA(2) variant present in the venom of the snake Bothrops jararacussu which shows a Asp49 to Lys substitution and which lacks hydrolytic activity yet damages artificial membranes by a noncatalytic Ca2+-independent mechanism. In order to better characterize this unusual mechanism of membrane damage, we have established an expression system for BthTX-I in Escherichia coli. The DNA-coding sequence for BthTX-I was subcloned into the vector pET11-d, and the BthTX-I was expressed as inclusion bodies in E. coli BL21(DE3). The native BthTX-I contains seven disulfide bonds, and a straightforward protocol has been developed to refold the recombinant protein at high protein concentration in the presence of surfactants using a size-exclusion chromatography matrix. After refolding, recovery yields of 2.5% (corresponding to 4-5 mg of refolded recombinant BthTX-I per liter of bacterial culture) were routinely obtained. After refolding, identical fluorescent and circular dichroism spectra were obtained for the recombinant BthTX-I compared to those of the native protein. Furthermore, the native and refolded recombinant protein demonstrated identical membrane-damaging properties as evaluated by measuring the release of an entrapped fluorescent marker from liposomes.


Assuntos
Venenos de Crotalídeos/química , Fosfolipases A/química , Substituição de Aminoácidos , Animais , Bothrops , Cromatografia em Gel , Cromatografia por Troca Iônica , Clonagem Molecular/métodos , Reagentes de Ligações Cruzadas , Venenos de Crotalídeos/genética , Venenos de Crotalídeos/isolamento & purificação , DNA Complementar , Escherichia coli/genética , Histidina , Corpos de Inclusão/metabolismo , Lipossomos , Lisina , Fosfolipases A2 , Dobramento de Proteína , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Fluorescência , Tensoativos
6.
Glycobiology ; 11(7): 541-7, 2001 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-11447133

RESUMO

Host cell invasion by Toxoplasma gondii is a multistep process with one of the first steps being the apical release of micronemal proteins that interact with host receptors. We demonstrate here that micronemal protein 1 (MIC1) is a lactose-binding lectin. MIC1 and MIC4 were recovered in the lactose-eluted (Lac(+)) fraction on affinity chromatography on immobilized lactose of the soluble antigen fraction from tachyzoites of the virulent RH strain. MIC1 and MIC4 were both identified by N-terminal microsequencing. MIC4 was also identified by sequencing cDNA clones isolated from an expression library following screening with mouse polyclonal anti-60/70 kDa (Lac(+) proteins) serum. This antiserum localized the Lac(+) proteins on the apical region of T. gondii tachyzoites by confocal microscopy. The Lac(+) fraction induced hemagglutination (mainly type A human erythrocytes), which was inhibited by beta-galactosides (3 mM lactose and 12 mM galactose) but not by up to 100 mM melibiose (alpha-galactoside), fucose, mannose, or glucose or 0.2 mg/ml heparin. The lectin activity of the Lac(+) preparation was attributed to MIC1, because blotted MIC1, but not native MIC4, bound human erythrocyte type A and fetuin. The copurification of MIC1 and MIC4 may have been due to their association, as reported by others. These data suggest that MIC1 may act through its lectin activity during T. gondii infection.


Assuntos
Moléculas de Adesão Celular/metabolismo , Hemaglutininas/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Sequência de Aminoácidos , Animais , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel de Poliacrilamida , Galectina 4 , Hemaglutininas/química , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA