Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 176: 11-20, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27031296

RESUMO

Cattle waste products high in nitrogen (N) that enter waterways via rainfall runoff can contribute to aquatic ecosystem health deterioration. It is well established that N leaching from this source can be reduced by plant assimilation, e.g. pasture grass. Additionally, N leaching can be reduced when there is sufficient carbon (C) in the soil such as plant litterfall to stimulate microbial processes, i.e. denitrification, which off-gas N from the soil profile. However, the relative importance of these two processes is not well understood. A soil microcosm experiment was conducted to determine the role of biotic processes, pasture grass and microbial activity, and abiotic processes such as soil sorption, in reducing N leaching loss, during successive additions of bovine urine. Pasture grass was the most effective soil cover in reducing N leaching losses, which leached 70% less N compared to exposed soil. Successive application of urine to the soil resulted in N accumulation, after which there was a breaking point indicated by high N leaching losses. This is likely to be due to the low C:N ratio within the soil profiles treated with urine (molar ratio 8:1) compared to water treated soils (30:1). In this experiment we examined the role of C addition in reducing N losses and showed that the addition of glucose can temporarily reduce N leaching. Overall, our results demonstrated that plant uptake of N was a more important process in preventing N leaching than microbial processes.


Assuntos
Nitrogênio/análise , Solo/química , Urina/química , Movimentos da Água , Poluentes da Água/análise , Água/química , Animais , Austrália , Carbono/análise , Bovinos , Fenômenos Químicos , Ecossistema , Monitoramento Ambiental , Concentração de Íons de Hidrogênio , Poaceae/química , Microbiologia do Solo , Poluentes do Solo/análise
2.
Mar Pollut Bull ; 206: 116704, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39004060

RESUMO

Extreme rainfall from an ex-tropical cyclone caused a major flood event in the Logan River system in southeast Queensland, Australia. This resulted in a significant flood plume, containing nutrients and sediment, being discharged into the adjacent estuary/Bay system. The spatial extent of higher phytoplankton biomass (Chl a) matched the distribution of higher nutrient and sediment concentrations post-flood, suggesting nutrients fuelled phytoplankton production. Particulate nitrogen (PN) constituted over 50 % of total nitrogen in floodwaters, with lower proportions of dissolved inorganic nitrogen (DIN) and phosphate (PO4-P). Phytoplankton utilised DIN rapidly but may have maintained growth due to the release of ammonia from suspended sediments and microbial mineralisation of particulate organic nitrogen. Ammonia release from intertidal sediments contributed minimally (0.85 %) to daily phytoplankton nitrogen demands. Our study highlights the need to understand the fate of particulate nitrogen in coastal systems and its role in stimulating phytoplankton growth.

3.
Mar Pollut Bull ; 169: 112565, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34119963

RESUMO

Estuaries in the tropical Gulf of Carpentaria (GOC) in Australia are under increasing pressure from catchment water development, potentially affecting productivity. We examined the potential effect of changes in freshwater inputs on the primary productivity of three estuaries (Flinders, Gilbert and Mitchell Rivers). The addition of nutrients stimulated mudflat primary production in all estuaries at multiple sampling times, suggesting chronic nutrient limitation. All three estuaries were productive with the Flinders estuary being the most productive of the three estuaries, compared to the Gilbert and Mitchell estuaries. This is despite the fact that the Flinders estuary has the shortest period of freshwater flow and more variable flows from year-to-year compared with the other estuaries. This makes the Flinders highly vulnerable to excessive water development. This study suggests that water extraction which significantly reduces freshwater inputs and associated nutrients has the potential to impact on productivity within these estuaries.


Assuntos
Estuários , Água Doce , Austrália , Nutrientes , Rios
4.
Sci Total Environ ; 598: 188-197, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28441597

RESUMO

Agricultural activities in catchments can cause excessive nutrient loads in waterways. Catchment nitrogen (N) and phosphorus (P) flows may be intercepted and assimilated by riparian vegetation. While prior studies suggest that woody vegetation is preferable for reducing P loads, the question remains: is woody vegetation or grass cover more effective at reducing catchment N and P exports to waterways. To address this we investigated the relative importance of vegetation type, hydrologic and soil microbial processes on N and P losses from soil to a stream. The study involved the analysis of data from two soil microcosm experiments, and a field case study. We found P leaching loss from riparian zones depended significantly on vegetation type (woody vs. grass cover), with lower P exported from wooded riparian zones, irrespective of the scale of rainfall. For N leaching losses, the scale of rainfall had an effect. During high rainfall, vegetation type had a major effect on N leaching loss, with lower N exported from grassed verses wooded riparian zones. However, under low rainfall conditions, soil type and soil C and N stores, potential indicators of soil microbial activity, rather than vegetation cover, affected N leaching. It is hypothesized that soil microbes were reducing N removal under these conditions. We reason that nitrifiers may have played an important role in soil N cycling, as increased soil ammonium had a strong positive effect on nitrate leaching loads, mediated through soil nitrate stores. Whereas, N immobilization, via incorporation into microbial biomass, and denitrification processes appeared to be limited by C availability, with increased C associated with reduced N leaching. Overall, this study identified that N leaching losses from riparian zones appeared to be affected by two different processes, vegetative uptake and soil microbial processes, the relative importance of which was driven by hydrological conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA