Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 14(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38893671

RESUMO

This investigation sought to discern the risk factors for atrial fibrillation within Shanghai's Chongming District, analyzing data from 678 patients treated at a tertiary hospital in Chongming District, Shanghai, from 2020 to 2023, collecting information on season, C-reactive protein, hypertension, platelets, and other relevant indicators. The researchers introduced a novel dual feature-selection methodology, combining hierarchical clustering with Fisher scores (HC-MFS), to benchmark against four established methods. Through the training of five classification models on a designated dataset, the most effective model was chosen for method performance evaluation, with validation confirmed by test set scores. Impressively, the HC-MFS approach achieved the highest accuracy and the lowest root mean square error in the classification model, at 0.9118 and 0.2970, respectively. This provides a higher performance compared to existing methods, thanks to the combination and interaction of the two methods, which improves the quality of the feature subset. The research identified seasonal changes that were strongly associated with atrial fibrillation (pr = 0.31, FS = 0.11, and DCFS = 0.33, ranked first in terms of correlation); LDL cholesterol, total cholesterol, C-reactive protein, and platelet count, which are associated with inflammatory response and coronary heart disease, also indirectly contribute to atrial fibrillation and are risk factors for AF. Conclusively, this study advocates that machine-learning models can significantly aid clinicians in diagnosing individuals predisposed to atrial fibrillation, which shows a strong correlation with both pathological and climatic elements, especially seasonal variations, in the Chongming District.

2.
Front Neurosci ; 16: 1031732, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389224

RESUMO

Artificial intelligence (AI) based on the perspective of data elements is widely used in the healthcare informatics domain. Large amounts of clinical data from electronic medical records (EMRs), electronic health records (EHRs), and electroencephalography records (EEGs) have been generated and collected at an unprecedented speed and scale. For instance, the new generation of wearable technologies enables easy-collecting peoples' daily health data such as blood pressure, blood glucose, and physiological data, as well as the application of EHRs documenting large amounts of patient data. The cost of acquiring and processing health big data is expected to reduce dramatically with the help of AI technologies and open-source big data platforms such as Hadoop and Spark. The application of AI technologies in health big data presents new opportunities to discover the relationship among living habits, sports, inheritances, diseases, symptoms, and drugs. Meanwhile, with the development of fast-growing AI technologies, many promising methodologies are proposed in the healthcare field recently. In this paper, we review and discuss the application of machine learning (ML) methods in health big data in two major aspects: (1) Special features of health big data including multimodal, incompletion, time validation, redundancy, and privacy. (2) ML methodologies in the healthcare field including classification, regression, clustering, and association. Furthermore, we review the recent progress and breakthroughs of automatic diagnosis in health big data and summarize the challenges, gaps, and opportunities to improve and advance automatic diagnosis in the health big data field.

3.
Zhongguo Yi Liao Qi Xie Za Zhi ; 34(2): 105-8, 2010 Mar.
Artigo em Zh | MEDLINE | ID: mdl-20540292

RESUMO

The law named The Safety Management Standardization of Medical Apparatus and Instruments in Clinic issued by the government recently, has classified the technical evaluation as one of the aspects of controlling medical risks in demonstration of medical equipments purchasing. This article has researched the organization behavior model, put forward the inevitability of the role in clinical engineering subjection, provided the idea and method of medical equipment purchasing plan, corresponding with the new standardization in now period.


Assuntos
Serviço Hospitalar de Compras/métodos , Serviço Hospitalar de Compras/organização & administração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA