Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 834
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 25(5)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39167797

RESUMO

Immunotherapy with immune checkpoint inhibitors (ICIs) is increasingly used to treat various tumor types. Determining patient responses to ICIs presents a significant clinical challenge. Although components of the tumor microenvironment (TME) are used to predict patient outcomes, comprehensive assessments of the TME are frequently overlooked. Using a top-down approach, the TME was divided into five layers-outcome, immune role, cell, cellular component, and gene. Using this structure, a neural network called TME-NET was developed to predict responses to ICIs. Model parameter weights and cell ablation studies were used to investigate the influence of TME components. The model was developed and evaluated using a pan-cancer cohort of 948 patients across four cancer types, with Area Under the Curve (AUC) and accuracy as performance metrics. Results show that TME-NET surpasses established models such as support vector machine and k-nearest neighbors in AUC and accuracy. Visualization of model parameter weights showed that at the cellular layer, Th1 cells enhance immune responses, whereas myeloid-derived suppressor cells and M2 macrophages show strong immunosuppressive effects. Cell ablation studies further confirmed the impact of these cells. At the gene layer, the transcription factors STAT4 in Th1 cells and IRF4 in M2 macrophages significantly affect TME dynamics. Additionally, the cytokine-encoding genes IFNG from Th1 cells and ARG1 from M2 macrophages are crucial for modulating immune responses within the TME. Survival data from immunotherapy cohorts confirmed the prognostic ability of these markers, with p-values <0.01. In summary, TME-NET performs well in predicting immunotherapy responses and offers interpretable insights into the immunotherapy process. It can be customized at https://immbal.shinyapps.io/TME-NET.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Microambiente Tumoral , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Microambiente Tumoral/imunologia , Neoplasias/imunologia , Redes Neurais de Computação , Imunoterapia
2.
Proc Natl Acad Sci U S A ; 120(51): e2312876120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38085783

RESUMO

Electrochemical synthesis of valuable chemicals and feedstocks through carbon dioxide (CO2) reduction in acidic electrolytes can surmount the considerable CO2 loss in alkaline and neutral conditions. However, achieving high productivity, while operating steadily in acidic electrolytes, remains a big challenge owing to the severe competing hydrogen evolution reaction. Here, we show that vertically grown bismuth nanosheets on a gas-diffusion layer can create numerous cavities as electrolyte reservoirs, which confine in situ-generated hydroxide and potassium ions and limit inward proton diffusion, producing locally alkaline environments. Based on this design, we achieve formic acid Faradaic efficiency of 96.3% and partial current density of 471 mA cm-2 at pH 2. When operated in a slim continuous-flow electrolyzer, the system exhibits a full-cell formic acid energy efficiency of 40% and a single pass carbon efficiency of 79% and performs steadily over 50 h. We further demonstrate the production of pure formic acid aqueous solution with a concentration of 4.2 weight %.

3.
Nano Lett ; 24(37): 11730-11737, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39248551

RESUMO

The atomic defect engineering could feasibly decorate the chemical behaviors of reaction intermediates to regulate catalytic performance. Herein, we created oxygen vacancies on the surface of In(OH)3 nanobelts for efficient urea electrosynthesis. When the oxygen vacancies were constructed on the surface of the In(OH)3 nanobelts, the faradaic efficiency for urea reached 80.1%, which is 2.9 times higher than that (20.7%) of the pristine In(OH)3 nanobelts. At -0.8 V versus reversible hydrogen electrode, In(OH)3 nanobelts with abundant oxygen vacancies exhibited partial current density for urea of -18.8 mA cm-2. Such a value represents the highest activity for urea electrosynthesis among recent reports. Density functional theory calculations suggested that the unsaturated In sites adjacent to oxygen defects helped to optimize the adsorbed configurations of key intermediates, promoting both the C-N coupling and the activation of the adsorbed CO2NH2 intermediate. In-situ spectroscopy measurements further validated the promotional effect of the oxygen vacancies on urea electrosynthesis.

4.
Pflugers Arch ; 476(2): 197-210, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37994929

RESUMO

Intermittent hypoxia training (IHT) is a promising approach that has been used to induce acclimatization to hypoxia and subsequently lower the risk of developing acute mountain sickness (AMS). However, the effects of IHT on cognitive and cerebrovascular function after acute hypoxia exposure have not been characterized. In the present study, we first confirmed that the simplified IHT paradigm was effective at relieving AMS at 4300 m. Second, we found that IHT improved participants' cognitive and neural alterations when they were exposed to hypoxia. Specifically, impaired working memory performance, decreased conflict control function, impaired cognitive control, and aggravated mental fatigue induced by acute hypoxia exposure were significantly alleviated in the IHT group. Furthermore, a reversal of brain swelling induced by acute hypoxia exposure was visualized in the IHT group using magnetic resonance imaging. An increase in cerebral blood flow (CBF) was observed in multiple brain regions of the IHT group after hypoxia exposure as compared with the control group. Based on these findings, the simplified IHT paradigm might facilitate hypoxia acclimatization, alleviate AMS symptoms, and increase CBF in multiple brain regions, thus ameliorating brain swelling and cognitive dysfunction.


Assuntos
Doença da Altitude , Edema Encefálico , Disfunção Cognitiva , Humanos , Hipóxia/complicações , Doença da Altitude/prevenção & controle , Aclimatação/fisiologia , Doença Aguda , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/prevenção & controle
5.
Neuroimage ; 297: 120722, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38971483

RESUMO

Previous studies have shown that major depressive disorder (MDD) patients exhibit structural and functional impairments, but few studies have investigated changes in higher-order coupling between structure and function. Here, we systematically investigated the effect of MDD on higher-order coupling between structural connectivity (SC) and functional connectivity (FC). Each brain region was mapped into embedding vector by the node2vec algorithm. We used support vector machine (SVM) with the brain region embedding vector to distinguish MDD patients from health controls (HCs) and identify the most discriminative brain regions. Our study revealed that MDD patients had decreased higher-order coupling in connections between the most discriminative brain regions and local connections in rich-club organization and increased higher-order coupling in connections between the ventral attentional network and limbic network compared with HCs. Interestingly, transcriptome-neuroimaging association analysis demonstrated the correlations between regional rSC-FC coupling variations between MDD patients and HCs and α/ß-hydrolase domain-containing 6 (ABHD6), ß 1,3-N-acetylglucosaminyltransferase-9(ß3GNT9), transmembrane protein 45B (TMEM45B), the correlation between regional dSC-FC coupling variations and retinoic acid early transcript 1E antisense RNA 1(RAET1E-AS1), and the correlations between regional iSC-FC coupling variations and ABHD6, ß3GNT9, katanin-like 2 protein (KATNAL2). In addition, correlation analysis with neurotransmitter receptor/transporter maps found that the rSC-FC and iSC-FC coupling variations were both correlated with neuroendocrine transporter (NET) expression, and the dSC-FC coupling variations were correlated with metabotropic glutamate receptor 5 (mGluR5). Further mediation analysis explored the relationship between genes, neurotransmitter receptor/transporter and MDD related higher-order coupling variations. These findings indicate that specific genetic and molecular factors underpin the observed disparities in higher-order SC-FC coupling between MDD patients and HCs. Our study confirmed that higher-order coupling between SC and FC plays an important role in diagnosing MDD. The identification of new biological evidence for MDD etiology holds promise for the development of innovative antidepressant therapies.


Assuntos
Encéfalo , Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/fisiopatologia , Transtorno Depressivo Maior/metabolismo , Transtorno Depressivo Maior/diagnóstico por imagem , Masculino , Adulto , Feminino , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Conectoma/métodos , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/metabolismo , Máquina de Vetores de Suporte , Transcriptoma
6.
J Am Chem Soc ; 146(29): 20379-20390, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39011931

RESUMO

Scarce and expensive iridium oxide is still the cornerstone catalyst of polymer-electrolyte membrane electrolyzers for green hydrogen production because of its exceptional stability under industrially relevant oxygen evolution reaction (OER) conditions. Earth-abundant transition metal oxides used for this task, however, show poor long-term stability. We demonstrate here the use of nitrogen-doped cobalt oxide as an effective iridium substitute. The catalyst exhibits a low overpotential of 240 mV at 10 mA cm-2 and negligible activity decay after 1000 h of operation in an alkaline electrolyte. Incorporation of nitrogen dopants not only triggers the OER mechanism switched from the traditional adsorbate evolution route to the lattice oxygen oxidation route but also achieves oxygen nonbonding (ONB) states as electron donors, thereby preventing structural destabilization. In a practical anion-exchange membrane water electrolyzer, this catalyst at anode delivers a current density of 1000 mA cm-2 at 1.78 V and an electrical efficiency of 47.8 kW-hours per kilogram hydrogen.

7.
J Hepatol ; 81(4): 651-666, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38679071

RESUMO

BACKGROUND & AIMS: Intrahepatic cholangiocarcinoma (iCCA) is a fatal malignancy of the biliary system. The lack of a detailed understanding of oncogenic signaling or global gene expression alterations has impeded clinical iCCA diagnosis and therapy. The role of protein lactylation, a newly unraveled post-translational modification that orchestrates gene expression, remains largely elusive in the pathogenesis of iCCA. METHODS: Proteomics analysis of clinical iCCA specimens and adjacent tissues was performed to screen for proteins aberrantly lactylated in iCCA. Mass spectrometry, macromolecule interaction and cell behavioral studies were employed to identify the specific lactylation sites on the candidate protein(s) and to decipher the downstream mechanisms responsible for iCCA development, which were subsequently validated using a xenograft tumor model and clinical samples. RESULTS: Nucleolin (NCL), the most abundant RNA-binding protein in the nucleolus, was identified as a functional lactylation target that correlates with iCCA occurrence and progression. NCL was lactylated predominantly at lysine 477 by the acyltransferase P300 in response to a hyperactivity of glycolysis, and promoted the proliferation and invasion of iCCA cells. Mechanistically, lactylated NCL bound to the primary transcript of MAP kinase-activating death domain protein (MADD) and led to efficient translation of MADD by circumventing alternative splicing that generates a premature termination codon. NCL lactylation, MADD translation and subsequent ERK activation promoted xenograft tumor growth and were associated with overall survival in patients with iCCA. CONCLUSION: NCL is lactylated to upregulate MADD through an RNA splicing-dependent mechanism, which potentiates iCCA pathogenesis via the MAPK pathway. Our findings reveal a novel link between metabolic reprogramming and canonical tumor-initiating events, and uncover biomarkers that can potentially be used for prognostic evaluation or targeted treatment of iCCA. IMPACT AND IMPLICATIONS: Intrahepatic cholangiocarcinoma (iCCA) is a highly aggressive liver malignancy with largely uncharacterized pathogenetic mechanisms. Herein, we demonstrated that glycolysis promotes P300-catalyzed lactylation of nucleolin, which upregulates MAP kinase-activating death domain protein (MADD) through precise mRNA splicing and activates ERK signaling to drive iCCA development. These findings unravel a novel link between metabolic rewiring and canonical oncogenic pathways, and reveal new biomarkers for prognostic assessment and targeting of clinical iCCA.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Nucleolina , Fosfoproteínas , Proteínas de Ligação a RNA , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Humanos , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Animais , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Camundongos , Splicing de RNA , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Processamento de Proteína Pós-Traducional , Proliferação de Células/genética , Proteômica/métodos
8.
J Transl Med ; 22(1): 637, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978099

RESUMO

BACKGROUND: Breast cancer patients exhibit various response patterns to neoadjuvant chemotherapy (NAC). However, it is uncertain whether diverse tumor response patterns to NAC in breast cancer patients can predict survival outcomes. We aimed to develop and validate radiomic signatures indicative of tumor shrinkage and therapeutic response for improved survival analysis. METHODS: This retrospective, multicohort study included three datasets. The development dataset, consisting of preoperative and early NAC DCE-MRI data from 255 patients, was used to create an imaging signature-based multitask model for predicting tumor shrinkage patterns and pathological complete response (pCR). Patients were categorized as pCR, nonpCR with concentric shrinkage (CS), or nonpCR with non-CS, with prediction performance measured by the area under the curve (AUC). The prognostic validation dataset (n = 174) was used to assess the prognostic value of the imaging signatures for overall survival (OS) and recurrence-free survival (RFS) using a multivariate Cox model. The gene expression data (genomic validation dataset, n = 112) were analyzed to determine the biological basis of the response patterns. RESULTS: The multitask learning model, utilizing 17 radiomic signatures, achieved AUCs of 0.886 for predicting tumor shrinkage and 0.760 for predicting pCR. Patients who achieved pCR had the best survival outcomes, while nonpCR patients with a CS pattern had better survival than non-CS patients did, with significant differences in OS and RFS (p = 0.00012 and p = 0.00063, respectively). Gene expression analysis highlighted the involvement of the IL-17 and estrogen signaling pathways in response variability. CONCLUSIONS: Radiomic signatures effectively predict NAC response patterns in breast cancer patients and are associated with specific survival outcomes. The CS pattern in nonpCR patients indicates better survival.


Assuntos
Neoplasias da Mama , Terapia Neoadjuvante , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/diagnóstico por imagem , Prognóstico , Pessoa de Meia-Idade , Adulto , Imageamento por Ressonância Magnética , Resultado do Tratamento , Estudos de Coortes , Idoso , Estudos Retrospectivos , Reprodutibilidade dos Testes , Radiômica
9.
Stem Cells ; 41(1): 77-92, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36208284

RESUMO

Hypoxia as a microenvironment or niche stimulates proliferation of neural stem cells (NSCs). However, the underlying mechanisms remain elusive. Autophagy is a protective mechanism by which recycled cellular components and energy are rapidly supplied to the cell under stress. Whether autophagy mediates the proliferation of NSCs under hypoxia and how hypoxia induces autophagy remain unclear. Here, we report that hypoxia facilitates embryonic NSC proliferation through HIF-1/mTORC1 signaling pathway-mediated autophagy. Initially, we found that hypoxia greatly induced autophagy in NSCs, while inhibition of autophagy severely impeded the proliferation of NSCs in hypoxia conditions. Next, we demonstrated that the hypoxia core regulator HIF-1 was necessary and sufficient for autophagy induction in NSCs. Considering that mTORC1 is a key switch that suppresses autophagy, we subsequently analyzed the effect of HIF-1 on mTORC1 activity. Our results showed that the mTORC1 activity was negatively regulated by HIF-1. Finally, we provided evidence that HIF-1 regulated mTORC1 activity via its downstream target gene BNIP3. The increased expression of BNIP3 under hypoxia enhanced autophagy activity and proliferation of NSCs, which was mediated by repressing the activity of mTORC1. We further illustrated that BNIP3 can interact with Rheb, a canonical activator of mTORC1. Thus, we suppose that the interaction of BNIP3 with Rheb reduces the regulation of Rheb toward mTORC1 activity, which relieves the suppression of mTORC1 on autophagy, thereby promoting the rapid proliferation of NSCs. Altogether, this study identified a new HIF-1/BNIP3-Rheb/mTORC1 signaling axis, which regulates the NSC proliferation under hypoxia through induction of autophagy.


Assuntos
Proteínas de Membrana , Células-Tronco Neurais , Humanos , Proteínas de Membrana/genética , Hipóxia Celular , Hipóxia/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Autofagia , Células-Tronco Neurais/metabolismo , Proliferação de Células , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
10.
Cell Commun Signal ; 22(1): 374, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39054523

RESUMO

BACKGROUND: High-altitude cerebral edema (HACE) is considered an end-stage acute mountain sickness (AMS) that typically occurs in people after rapid ascent to 2500 m or more. While hypoxia is a fundamental feature of the pathophysiological mechanism of HACE, emerging evidence suggests that inflammation serves as a key risk factor in the occurrence and development of this disease. However, little is known about the molecular mechanism underlying their crosstalk. METHODS: A mouse HACE model was established by combination treatment with hypobaric hypoxia exposure and lipopolysaccharides (LPS) stimulation. Lactylated-proteomic analysis of microglia was performed to reveal the global profile of protein lactylation. Molecular modeling was applied to evaluate the 3-D modeling structures. A combination of experimental approaches, including western blotting, quantitative real-time reverse transcriptionpolymerase chain reaction (qRT-PCR), and enzyme-linked immunosorbent assay (ELISA), confocal microscopy and RNA interference, were used to explore the underlying molecular mechanisms. RESULTS: We found that hypoxia exposure increased the lactate concentration and lactylation in mouse HACE model. Moreover, hypoxia aggravated the microglial neuroinflammatory response in a lactate-dependent manner. Global profiling of protein lactylation has shown that a large quantity of lysine-lactylated proteins are induced by hypoxia and preferentially occur in protein complexes, such as the NuRD complex, ribosome biogenesis complex, spliceosome complex, and DNA replication complex. The molecular modeling data indicated that lactylation could affect the 3-D theoretical structure and increase the solvent accessible surface area of HDAC1, MTA1 and Gatad2b, the core members of the NuRD complex. Further analysis by knockdown or selectively inhibition indicated that the NuRD complex is involved in hypoxia-mediated aggravation of inflammation. CONCLUSIONS: These results revealed a comprehensive profile of protein lactylation in microglia and suggested that protein lysine lactylation plays an important role in the regulation of protein function and subsequently contributes to the neuroinflammatory response under hypoxic conditions.


Assuntos
Edema Encefálico , Microglia , Microglia/metabolismo , Microglia/patologia , Animais , Edema Encefálico/metabolismo , Edema Encefálico/patologia , Camundongos , Doença da Altitude/metabolismo , Doença da Altitude/patologia , Masculino , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Lipopolissacarídeos/farmacologia , Altitude , Proteômica
11.
Mol Cell Biochem ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39231894

RESUMO

The degradation of proteasomes or lysosomes is emerging as a principal determinant of programmed death ligand 1 (PDL1) expression, which affects the efficacy of immunotherapy in various malignancies. Intracellular cholesterol plays a central role in maintaining the expression of membrane receptors; however, the specific effect of cholesterol on PDL1 expression in cancer cells remains poorly understood. Cholesterol starvation and stimulation were used to modulate the cellular cholesterol levels. Immunohistochemistry and western blotting were used to analyze the protein levels in the samples and cells. Quantitative real-time PCR, co-immunoprecipitation, and confocal co-localization assays were used for mechanistic investigation. A xenograft tumor model was constructed to verify these results in vivo. Our results showed that cholesterol suppressed the ubiquitination and degradation of PDL1 in hepatocellular carcinoma (HCC) cells. Further mechanistic studies revealed that the autocrine motility factor receptor (AMFR) is an E3 ligase that mediated the ubiquitination and degradation of PDL1, which was regulated by the cholesterol/p38 mitogenic activated protein kinase axis. Moreover, lowering cholesterol levels using statins improved the efficacy of programmed death 1 (PD1) inhibition in vivo. Our findings indicate that cholesterol serves as a signal to inhibit AMFR-mediated ubiquitination and degradation of PDL1 and suggest that lowering cholesterol by statins may be a promising combination strategy to improve the efficiency of PD1 inhibition in HCC.

12.
Artigo em Inglês | MEDLINE | ID: mdl-39255010

RESUMO

Two novel strains, YIM 133132T and YIM 133296, were isolated from lichen samples collected from Yunnan Province, Southwest PR China. YIM 133132T and YIM 133296 are aerobic, Gram-staining-positive, non-motile actinomycetes. They are also catalase-positive and oxidase-negative, and YIM 133132T formed flat yellowish colonies that were relatively dry on YIM38 agar medium. Flat yellowish colonies of YIM 133296 were also observed on YIM38 agar medium. YIM 133132T grew at 25-35 °C (optimum 25-30 °C), pH 6.0-9.0 (optimum pH 7.0) and in the presence of 0-8% (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strains YIM 133132T and YIM 133296 represented members of the genus Luteipulveratus and exhibited high sequence similarity (96.93%) with Luteipulveratus halotolerans C296001T. The genomic DNA G+C content of both strains was 71.8%. The DNA-DNA hybridisation (dDDH) values between YIM 133132T and YIM 133296 were 85.1%, and the DNA-DNA hybridisation value between YIM 133132T and YIM 133296 and L. halotolerans C296001T was 23.4%. On the basis of the draft genome sequences, the average nucleotide identity (ANI) between strains YIM 133132T and YIM 133296 and L. halotolerans C296001T was 80.8%. The major menaquinones that were identified were MK-8(H4), MK-9 and MK-8(H2). The polar lipids were diphosphatidylglycerol and phosphatidylinositol. On the basis of the morphological, physiological, biochemical, genomic, phylogenetic and chemotaxonomic characteristics, strains YIM 133132T and YIM 133296 can be clearly distinguished from L. halotolerans C296001T, and the two strains represent a novel species for which the name L. flavus sp. nov. is proposed. The type strain is YIM 133132T (CGMCC= 1.61357T and KCTC= 49824T).


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Líquens , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , RNA Ribossômico 16S/genética , China , DNA Bacteriano/genética , Líquens/microbiologia , Ácidos Graxos/química , Ácidos Graxos/análise , Fosfolipídeos
13.
Nanotechnology ; 35(32)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38701764

RESUMO

Herein, corundum-structured Ga2O3(α-Ga2O3) nanorod array/fluorine-doped SnO2(FTO) structures have been fabricated by hydrothermal and thermal annealing processes with different precursor concentrations from 0.01 to 0.06 M. The diameter and length of the nanorod arrays are much larger with increasing precursor concentrations due to more nucleation sites and precursor ions participating in the reaction procedures. The optical bandgap decreases from 4.75 to 4.47 eV because of the tensile stress relieving with increasing the precursor concentrations. Based on self-powered photoelectrochemical (PEC) photodetectors, the peak responsivity is improved from ∼0.33 mA W-1for 0.06 M to ∼1.51 mA W-1for 0.02 M. Schottky junctions can be formed in PEC cells. More photogenerated carriers can be produced in wider depletion region. From Mott-Schottky plots, the depletion regions become much wider with decreasing the precursor concentrations. Therefore, the enhance responsivity is owing to the wider depletion regions. Due to the reduced possibility of photogenerated holes captured by traps ascribed from fewer green and yellow luminescence defects, smaller charge transfer resistance, and shorter transportation route, the decay time becomes much faster through decreasing the precursor concentrations. Compared with the other self-poweredα-Ga2O3-nanorod-array-based PEC photodetectors, it shows the fastest response time (decay time of 0.005 s/0.026 s) simply modulated by precursor concentrations for the first time without employing complex precursors, seed layers or special device designs. Compared with other high-responsivity monoclinic Ga2O3(ß-Ga2O3) self-powered photodetectors, our devices also show comparable response speed with simple control and design. This work provides the realization of fast-speed self-powered Ga2O3based solar-blind ultraviolet photodetectors by simple modulation processes and design, which is a significant guidance for their applications in warnings, imaging, computing, communication and logic circuit, in the future.

14.
Environ Res ; 249: 118314, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38331145

RESUMO

BACKGROUND: A growing number of studies have examined the relation between solid fuels use and cognitive function in the mid-elderly, but results are inconsistent. Therefore, a systematic review and meta-analysis was carried out to evaluate their relevance and the efficacy of switching to cleaner fuels or using ventilation. METHOD: We used PubMed, Web of Science, and Cochrane Library databases to identify 17 studies in which the primary outcome variable was cognitive function decline or cognitive disorders, and the exposure measure was solid fuels use. The final search date of August 31, 2023. The effect size of odds ratio (OR), regression coefficient (ß), and 95% confidence interval (CI) were pooled. Heterogeneity and the possibility of publication bias were assessed by using the Q-statistic and Begg's test, respectively. RESULT: Among the 17 included papers, the study participants were ≥45 years old. Eleven studies assessed the relationship between solid fuels use and cognitive function decline [number of studies (n) = 11, ß = -0.144; I2 = 97.7%]. Five studies assessed the relationship between solid fuels use and cognitive disorders (n = 5, OR = 1.229; I2 = 41.1%). Switching from using solid fuels to clean fuels could reduce the risk of cognitive function decline as compared to those who remained on using solid fuels (n = 2; ß = 0.710; I2 = 82.4%). Among participants using solid fuels, who cooked without on ventilated stoves were correlated with an enhanced risk of cognitive disorders as compared to participants who cooked with ventilated stoves (n = 2; OR = 1.358; I2 = 44.7%). CONCLUSION: Our meta-analysis showed a negative relationship between solid fuels use with cognitive function, and a positive relationship with cognitive disorders. Cleaner fuels, using ventilation, improved cookstoves can reduce the adverse health hazards of solid fuels use.


Assuntos
Poluição do Ar em Ambientes Fechados , Cognição , Ventilação , Humanos , Poluição do Ar em Ambientes Fechados/efeitos adversos , Culinária , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/epidemiologia
15.
Dev Psychopathol ; : 1-11, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38179683

RESUMO

Childhood maltreatment is an established risk factor for psychopathology. However, it remains unclear how childhood traumatic events relate to mental health problems and how the brain is involved. This study examined the serial mediation effect of brain morphological alterations and emotion-/reward-related functions on linking the relationship from maltreatment to depression. We recruited 156 healthy adolescents and young adults and an additional sample of 31 adolescents with major depressive disorder for assessment of childhood maltreatment, depressive symptoms, cognitive reappraisal and anticipatory/consummatory pleasure. Structural MRI data were acquired to identify maltreatment-related cortical and subcortical morphological differences. The mediation models suggested that emotional maltreatment of abuse and neglect, was respectively associated with increased gray matter volume in the ventral striatum and greater thickness in the middle cingulate cortex. These structural alterations were further related to reduced anticipatory pleasure and disrupted cognitive reappraisal, which contributed to more severe depressive symptoms among healthy individuals. The above mediating effects were not replicated in our clinical group partly due to the small sample size. Preventative interventions can target emotional and reward systems to foster resilience and reduce the likelihood of future psychiatric disorders among individuals with a history of maltreatment.

16.
Chem Biodivers ; : e202401801, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39211952

RESUMO

Three undescribed pregnane steroids, 12ß-O-4-hydroxybenzoyl tenacigenin D (1), 12ß-O-4-hydroxybenzoyl tenacigenin A (2), and 11α-nicotinoyl-17ß-marsdenin (3), along with two known analogues (4 and 5), were isolated from the roots of Marsdenia tenacissima. Their structures were elucidated using one- and two-dimensional NMR, high-resolution electron ionization-mass spectrometry, single-crystal X-ray diffraction data, and experimental and density-functional-theory-calculated electronic circular dichroism measurements. All isolated compounds were evaluated for their cytotoxic activities against human lung cancer cells (A549), ovarian carcinoma cells (SKOV-3), gastric cancer cells (MGC 803) and breast cancer cells (MCF-7). Notably, 3 exhibited significant cytotoxic activity against both A549 (median inhibitory concentration (IC50)=16.79 µM) and SKOV-3 (IC50=12.30 µM) cells while exhibiting moderate cytotoxicity on MGC803 and MCF-7 cells.

17.
J Am Chem Soc ; 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37021910

RESUMO

Electrocatalytic carbon dioxide reduction (CO2R) in neutral electrolytes can mitigate the energy and carbon losses caused by carbonate formation but often experiences unsatisfied multicarbon selectivity and reaction rates because of the kinetic limitation to the critical carbon monoxide (CO)-CO coupling step. Here, we describe that a dual-phase copper-based catalyst with abundant Cu(I) sites at the amorphous-nanocrystalline interfaces, which is electrochemically robust in reducing environments, can enhance chloride-specific adsorption and consequently mediate local *CO coverage for improved CO-CO coupling kinetics. Using this catalyst design strategy, we demonstrate efficient multicarbon production from CO2R in a neutral potassium chloride electrolyte (pH ∼6.6) with a high Faradaic efficiency of 81% and a partial current density of 322 milliamperes per square centimeter. This catalyst is stable after 45 h of operation at current densities relevant to commercial CO2 electrolysis (300 mA per square centimeter).

18.
BMC Med ; 21(1): 338, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667257

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a devastating malignancy with a 5-year survival rate of 6% following a diagnosis, and novel therapeutic modalities are needed. Protease-activated receptor 1 (PAR1) is abundantly overexpressed by both tumor cells and multiple stroma cell subsets in the tumor microenvironment (TME), thereby offering a suitable immunotherapy target. METHODS: A chimeric antigen receptor (CAR) strategy was applied to target PAR1 using a human anti-PAR1 scFv antibody fused to the transmembrane region with two co-stimulatory intracellular signaling domains of cluster of differentiation 28 (CD28) and CD137 (4-1BB), added to CD3ζ in tandem. RESULTS: The engineered PAR1CAR-T cells eliminated PAR1 overexpression and transforming growth factor (TGF)-ß-mediated PAR1-upregulated cancer cells by approximately 80% in vitro. The adoptive transfer of PAR1CAR-T cells was persistently enhanced and induced the specific regression of established MIA PaCa-2 cancer cells by > 80% in xenograft models. Accordingly, proinflammatory cytokines/chemokines increased in CAR-T-cell-treated mouse sera, whereas Ki67 expression in tumors decreased. Furthermore, the targeted elimination of PAR1-expressing tumors reduced matrix metalloproteinase 1 (MMP1) levels, suggesting that the blocking of the PAR1/MMP1 pathway constitutes a new therapeutic option for PDAC treatment. CONCLUSIONS: Third-generation PAR1CAR-T cells have antitumor activity in the TME, providing innovative CAR-T-cell immunotherapy against PDAC.


Assuntos
Neoplasias Pancreáticas , Receptores de Antígenos Quiméricos , Humanos , Animais , Camundongos , Receptor PAR-1/genética , Metaloproteinase 1 da Matriz , Neoplasias Pancreáticas/terapia , Microambiente Tumoral , Neoplasias Pancreáticas
19.
J Transl Med ; 21(1): 851, 2023 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-38007511

RESUMO

BACKGROUND: The tumor microenvironment and intercellular communication between solid tumors and the surrounding stroma play crucial roles in cancer initiation, progression, and prognosis. Radiomics provides clinically relevant information from radiological images; however, its biological implications in uncovering tumor pathophysiology driven by cellular heterogeneity between the tumor and stroma are largely unknown. We aimed to identify radiogenomic signatures of cellular tumor-stroma heterogeneity (TSH) to improve breast cancer management and prognosis analysis. METHODS: This retrospective multicohort study included five datasets. Cell subpopulations were estimated using bulk gene expression data, and the relative difference in cell subpopulations between the tumor and stroma was used as a biomarker to categorize patients into good- and poor-survival groups. A radiogenomic signature-based model utilizing dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was developed to target TSH, and its clinical significance in relation to survival outcomes was independently validated. RESULTS: The final cohorts of 1330 women were included for cellular TSH biomarker identification (n = 112, mean age, 57.3 years ± 14.6) and validation (n = 886, mean age, 58.9 years ± 13.1), radiogenomic signature of TSH identification (n = 91, mean age, 55.5 years ± 11.4), and prognostic (n = 241) assessments. The cytotoxic lymphocyte biomarker differentiated patients into good- and poor-survival groups (p < 0.0001) and was independently validated (p = 0.014). The good survival group exhibited denser cell interconnections. The radiogenomic signature of TSH was identified and showed a positive association with overall survival (p = 0.038) and recurrence-free survival (p = 3 × 10-4). CONCLUSION: Radiogenomic signatures provide insights into prognostic factors that reflect the imbalanced tumor-stroma environment, thereby presenting breast cancer-specific biological implications and prognostic significance.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Pessoa de Meia-Idade , Prognóstico , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/genética , Estudos Retrospectivos , Perfilação da Expressão Gênica/métodos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/análise , Tireotropina/genética , Microambiente Tumoral/genética
20.
Neurosurg Rev ; 46(1): 117, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37165260

RESUMO

The number of elderly patients with aneurysmal subarachnoid hemorrhage (aSAH) is increasing annually. The prognostic nutritional index (PNI) is used as a novel and valuable prognostic marker for various neoplastic diseases and other critical illnesses. This study aimed to identify the short-term prognostic value of preoperative PNI in elderly patients who underwent neurosurgical clipping for aSAH. This retrospective study included elderly patients with aSAH who underwent neurosurgical clipping from January 2018 to December 2020. Clinical variables and 6-month outcomes were collected and compared. Epidemiological data and effect factors of prognosis were evaluated. Multivariate logistic regression and receiver operating characteristics (ROC) curve analyses were used to evaluate the predictive value of preoperative PNI. Multiple logistic regression was performed to establish a nomogram. A total of 124 elderly patients were enrolled. Multivariate logistic regression analysis showed that preoperative PNI (odds ratio (OR), 0.779; 95% confidence interval (CI), 0.689-0.881; P < 0.001), Hunt-Hess grade (OR, 3.291; 95%CI, 1.816-5.966; P < 0.001), and hydrocephalus (OR, 9.423; 95%CI, 2.696-32.935; P < 0.001) were significant predictors. The area under the ROC curve of PNI was 0.829 (95% CI, 0.755-0.903; P < 0.001) with a sensitivity and specificity of 68.4% and 83.3%, respectively, and the cutoff value was 46.36. Patients with preoperative PNI of < 46.36 had a significantly unfavorable 6-months prognosis (F = 40.768, P < 0.001). Preoperative PNI is independently correlated with the 6-month prognosis in elderly patients who undergo neurosurgical clipping for aSAH.


Assuntos
Hemorragia Subaracnóidea , Humanos , Idoso , Prognóstico , Hemorragia Subaracnóidea/cirurgia , Avaliação Nutricional , Estudos Retrospectivos , Nomogramas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA