Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(4): 107200, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508315

RESUMO

Interferon (IFN) regulatory factors (IRF) are key transcription factors in cellular antiviral responses. IRF7, a virus-inducible IRF, expressed primarily in myeloid cells, is required for transcriptional induction of interferon α and antiviral genes. IRF7 is activated by virus-induced phosphorylation in the cytoplasm, leading to its translocation to the nucleus for transcriptional activity. Here, we revealed a nontranscriptional activity of IRF7 contributing to its antiviral functions. IRF7 interacted with the pro-inflammatory transcription factor NF-κB-p65 and inhibited the induction of inflammatory target genes. Using knockdown, knockout, and overexpression strategies, we demonstrated that IRF7 inhibited NF-κB-dependent inflammatory target genes, induced by virus infection or toll-like receptor stimulation. A mutant IRF7, defective in transcriptional activity, interacted with NF-κB-p65 and suppressed NF-κB-induced gene expression. A single-action IRF7 mutant, active in anti-inflammatory function, but defective in transcriptional activity, efficiently suppressed Sendai virus and murine hepatitis virus replication. We, therefore, uncovered an anti-inflammatory function for IRF7, independent of transcriptional activity, contributing to the antiviral response of IRF7.


Assuntos
Fator Regulador 7 de Interferon , NF-kappa B , Animais , Humanos , Camundongos , Células HEK293 , Inflamação/genética , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/imunologia , NF-kappa B/genética , NF-kappa B/imunologia , Vírus Sendai/fisiologia , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/imunologia , Replicação Viral , Mutação , Regulação da Expressão Gênica/genética , Vírus da Hepatite Murina/fisiologia , Infecções por Coronavirus/imunologia , Infecções por Respirovirus/imunologia
2.
Proc Natl Acad Sci U S A ; 119(37): e2121385119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36067309

RESUMO

Interferon (IFN) regulatory factor 3 (IRF3) is a transcription factor activated by phosphorylation in the cytoplasm of a virus-infected cell; by translocating to the nucleus, it induces transcription of IFN-ß and other antiviral genes. We have previously reported IRF3 can also be activated, as a proapoptotic factor, by its linear polyubiquitination mediated by the RIG-I pathway. Both transcriptional and apoptotic functions of IRF3 contribute to its antiviral effect. Here, we report a nontranscriptional function of IRF3, namely, the repression of IRF3-mediated NF-κB activity (RIKA), which attenuated viral activation of NF-κB and the resultant inflammatory gene induction. In Irf3-/- mice, consequently, Sendai virus infection caused enhanced inflammation in the lungs. Mechanistically, RIKA was mediated by the direct binding of IRF3 to the p65 subunit of NF-κB in the cytoplasm, which prevented its nuclear import. A mutant IRF3 defective in both the transcriptional and the apoptotic activities was active in RIKA and inhibited virus replication. Our results demonstrated IRF3 deployed a three-pronged attack on virus replication and the accompanying inflammation.


Assuntos
Imunidade Inata , Fator Regulador 3 de Interferon , NF-kappa B , Pneumonia Viral , Transporte Ativo do Núcleo Celular , Animais , Núcleo Celular/metabolismo , Expressão Gênica , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/genética , Camundongos , NF-kappa B/metabolismo , Pneumonia Viral/genética , Pneumonia Viral/imunologia , Vírus Sendai
3.
BMC Pediatr ; 24(1): 317, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720245

RESUMO

BACKGROUND: Patients with Turner syndrome (TS) face an increased risk of developing aortic dilatation (AD), but diagnosing AD in children presents greater complexity compared to adults. This study aimed to investigate the application of various assessment indicators of AD in Chinese children and adolescents with TS. METHODS: This study included TS patients admitted to Shenzhen Children's Hospital from 2017 to 2022. Cardiovascular lesions were diagnosed by experienced radiologists. Patients without structural heart disease were divided into different body surface area groups, then the Chinese TS population Z-score (CHTSZ-score) of the ascending aorta was calculated and compared with other indicators such as aortic size index (ASI), ratio of the ascending to descending aortic diameter (A/D ratio), and TSZ-score (Quezada's method). RESULTS: A total of 115 TS patients were included, with an average age of 10.0 ± 3.7 years. The incidences of the three most serious cardiovascular complications were 9.6% (AD), 10.4% (coarctation of the aorta, CoA), and 7.0% (bicuspid aortic valve, BAV), respectively. The proportion of developing AD in TS patients aged ≥ 10 years was higher than that in those < 10 years old (16.6% vs. 1.8%, P = 0.009), and the proportion of patients with CoA or BAV who additionally exhibited AD was higher than those without these conditions (31.6% vs. 5.2%, P < 0.001). The ASI, A/D ratio, TSZ-score, and CHTSZ-score of the 11 patients with AD were 2.27 ± 0.40 cm/m2, 1.90 ± 0.37, 1.28 ± 1.08, and 3.07 ± 2.20, respectively. Among the AD patients, only 3 cases had a TSZ-score ≥ 2, and 2 cases had a TSZ-score ≥ 1. However, based on the assessment using the CHTSZ-score, 6 patients scored ≥ 2, and 5 patients scored ≥ 1. In contrast, the TSZ-score generally underestimated the aortic Z-scores in Chinese children with TS compared to the CHTSZ-score. CONCLUSIONS: The applicability of ASI and A/D ratio to children with TS is questionable, and racial differences can affect the assessment of TSZ-score in the Chinese population. Therefore, establishing the CHTSZ-score specifically tailored for Chinese children and adolescents is of paramount importance.


Assuntos
Síndrome de Turner , Humanos , Síndrome de Turner/complicações , Criança , Adolescente , Feminino , China/epidemiologia , Dilatação Patológica/etiologia , Masculino , Estudos Retrospectivos , Aorta/patologia , Aorta/diagnóstico por imagem , Coartação Aórtica , Doença da Válvula Aórtica Bicúspide/complicações , Pré-Escolar , Incidência , População do Leste Asiático
4.
J Biol Chem ; 297(5): 101274, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34619149

RESUMO

The ubiquitously expressed transcription factor interferon (IFN) regulatory factor 3 (IRF3) is critical for the induction of antiviral genes, e.g., type-I IFN. In addition to its transcriptional function, IRF3 also activates a nontranscriptional, proapoptotic signaling pathway. While the proapoptotic function of IRF3 protects against viral infections, it is also involved in harmful immune responses that trigger hepatocyte cell death and promote liver disease. Thus, we hypothesized that a small-molecule inhibitor of the proapoptotic activity of IRF3 could alleviate fatty-acid-induced hepatocyte cell death. We conducted a high-throughput screen, which identified auranofin as a small-molecule inhibitor of the proapoptotic activity of IRF3. In addition to the nontranscriptional apoptotic pathway, auranofin also inhibited the transcriptional activity of IRF3. Using biochemical and genetic tools in human and mouse cells, we uncovered a novel mechanism of action for auranofin, in which it induces cellular autophagy to degrade IRF3 protein, thereby suppressing IRF3 functions. Autophagy-deficient cells were unable to degrade IRF3 upon auranofin treatment, suggesting that the autophagic degradation of IRF3 is a novel approach to regulate IRF3 activities. Using a physiologically relevant in vitro model, we demonstrated that auranofin inhibited fatty-acid-induced apoptotic cell death of hepatocytes. In summary, auranofin is a novel inhibitor of IRF3 functions and may represent a potential therapeutic option in diseases where IRF3 is deleterious.


Assuntos
Apoptose/efeitos dos fármacos , Auranofina/farmacologia , Autofagia/efeitos dos fármacos , Fator Regulador 3 de Interferon/metabolismo , Proteólise/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Animais , Humanos , Fator Regulador 3 de Interferon/genética , Camundongos , Células RAW 264.7
5.
BMC Pediatr ; 21(1): 429, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34592941

RESUMO

BACKGROUND: Z score utility is emphasized in classifying coronary artery lesions in Kawasaki disease patients. The present study is the largest such multicenter Chinese pediatric study about coronary artery diameter reference values and Z score regression equation to date. It is useful in Chinese pediatric echocardiography. METHODS: A multicenter cohort was assembled, which consisted of 852 healthy children between 1 month and 17 years of age, ten children were excluded because their ultrasound images were not clear, or lost in following up. Diameters of the right coronary artery, left coronary artery, and left anterior descending coronary artery were assessed using echocardiography. Data were body surface area (BSA)-corrected using BSA calculated via either the Stevenson BSA formula or the Haycock BSA formula. Coronary artery diameter reference values and Z score regression equations were established for use in the Chinese pediatric population. RESULTS: No difference was observed between coronary artery diameter data corrected using BSAste or BSAhay. Of the five assessed regression models, the exponential model exhibited the best fit and was therefore selected as the basis for derivation of the SZ method. When comparing Z scores, those produced by the SZ method conformed to the standard normal distribution, while those produced by the D method did not. In addition, there was a statistically significant difference between Z scores produced by the SZ and D methods (P < 0.05). CONCLUSIONS: Coronary artery diameter reference values for echocardiography were successfully established for use in the Chinese pediatric population, and a Z score regression equation more suitable for clinical use in this population was successfully developed.


Assuntos
Vasos Coronários , Ecocardiografia , Criança , China , Estudos de Coortes , Vasos Coronários/diagnóstico por imagem , Humanos , Lactente , Estudos Prospectivos , Valores de Referência
6.
Mikrochim Acta ; 187(1): 69, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31853726

RESUMO

A glassy carbon electrode (GCE) was modified with a composite prepared from phytic acid, polypyrrole and a ZIF type metal-organic framework (PA/PPy)/ZIF-8@ZIF-67). The nanocomposite was prepared by in-situ chemical polymerization in the presence of ferric chloride and subsequently functionalized with PA to form PA/PPy/ZIF-8@ZIF-67. The materials were characterized by XRD, FT-IR, BET, XPS, SEM and TEM. The modified GCE was applied to individual and simultaneous detection of Pb(II) and Cu(II), with peak voltages of -0.6 and - 0.1 V, respectively (vs. SCE). The amount of PPy, the ZIF-8@ZIF-67 concentration, polymerization potential, polymerization time and pH value were optimized. Under optimized conditions, the calibration plots have two linear ranges. These are from 0.02 to 200 µM and from 200 to 600 µM for Pb(II), and from 0.2 to 200 µM and 200 to 600 µM for Cu(II). The detection limits are 2.9 nM and 14.8 nM, respectively. Simultaneous detection of Pb(II) and Cu(II) is also demonstrated. The good performance of the electrode is attributed to the large surface area of ZIF-8@ZIF-67, the good electrical conductivity of PPy, and the metal complexation power of PA. The modified GCE was successfully applied to the determination of Pb(II) and Cu(II) in real samples and gave satisfactory recoveries. Graphical abstractSchematic presentation of the construction process of PA/PPy/ZIF-8@ZIF-67/GCE sensor, and the mechanism of Pb(II) and Cu(II) at the prepared sensor.

7.
J Matern Fetal Neonatal Med ; 37(1): 2320673, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38475689

RESUMO

Purpose: This review aims to overview the use of echocardiography in diagnosing neonatal pulmonary hypertension, assessing cardiac function, and understanding the significance and limitations of various parameters in clinical practice.Materials and methods: Advancements in echocardiography for diagnosing and assessing neonatal pulmonary hypertension, evaluating cardiac function, monitoring treatment effectiveness, and predicting prognosis are discussed.Results: Echocardiography is a pivotal tool for diagnosing and managing neonatal pulmonary hypertension. It should be used with other ultrasound parameters to confirm findings and provide comprehensive analysis for improved accuracy.Conclusion: Understanding the value of echocardiography in neonatal pulmonary hypertension diagnosis and management is crucial. Its integration with other imaging modalities enhances diagnostic accuracy and improves patient outcomes.


Assuntos
Hipertensão Pulmonar , Recém-Nascido , Humanos , Ecocardiografia/métodos , Prognóstico
8.
Front Pediatr ; 12: 1353883, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577636

RESUMO

Crohn's disease (CD) is a chronic, non-specific inflammatory disease of the intestinal tract with an unknown etiology. It presents with clinical symptoms such as abdominal distension, abdominal pain, diarrhea, bloody stools containing mucus or pus, and other manifestations. CD has a prolonged and chronic course and can lead to various complications that significantly impact patients' quality of life. Patients with CD have hypercoagulable blood and are prone to thromboembolic diseases, which pose a serious threat to their lives. Several studies have indicated that inflammatory bowel disease is a risk factor for venous thromboembolism. The pathogenesis involves abnormalities in the coagulation-anticoagulation system, fibrinolytic system, platelets, vascular endothelial dysfunction, as well as the effects of therapeutic agents. In this case report, we present a rare case of a 15-year-old female patient with active CD complicated by the presence of a right atrial thrombus. Laboratory tests revealed abnormalities in both the coagulation-anticoagulation system and fibrinolysis system in the patient. The initial diagnosis, based on transthoracic echocardiography and contrast-enhanced echocardiography, confirmed the presence of a thrombus in the right atrium. Subsequent administration of anticoagulant and thrombolytic therapy resulted in gradual reduction in size until complete disappearance, as evidenced by dynamic monitoring. Ultrasound examination is considered as the preferred method for follow-up evaluation in patients with CD due to its ability not only to assess gastrointestinal complications but also to aid early identification of cardiovascular complications, thereby enabling timely intervention and treatment-which remains our primary focus of research and effort.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38833045

RESUMO

To investigate noninvasive pressure-strain loop (PSL) combined with two-dimensional speck tracking imaging and left ventricular pressure measurement in the evaluation of cardiac function changes in anemia of prematurity (AOP) with different modes of respiratory support, and to explore its value in detecting subclinical myocardial injury in preterm infants. This retrospective study included 79 preterm infants with anemia, according to different modes of respiratory support, who were divided into invasive respiratory support group (39 cases) and noninvasive respiratory support group (40 cases). A control group of 40 nonanemic preterm infants with matched age, sex, and gestational age were also included. Complete echocardiography was performed for each included infant. There are PSL parameters that used to evaluate cardiac function, including global longitudinal strain (GLS), global work index (GWI), global constructive work (GCW), global wasted work (GWW), and global work efficiency (GWE) among the three groups were compared. Compared with the control group, the value of GWI, GCW, and GWE were significantly lower and GWW was higher in the AOP groups (P < 0.05), and GWI, GCW and GWE were much significantly lower in the invasive respiratory support group than in the noninvasive respiratory support group (P < 0.05). There was no significant difference in GLS among the three groups (P > 0.05). Noninvasive PSL analysis can quantitatively assess myocardial work in AOP with different respiratory support, which is more sensitive than other conventional echocardiographic indices. This technique may provide a new method for monitoring subclinical myocardial injury with AOP.

10.
Acta Pharm Sin B ; 14(2): 836-853, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38322346

RESUMO

Conventional chemotherapy based on cytotoxic drugs is facing tough challenges recently following the advances of monoclonal antibodies and molecularly targeted drugs. It is critical to inspire new potential to remodel the value of this classical therapeutic strategy. Here, we fabricate bisphosphonate coordination lipid nanogranules (BC-LNPs) and load paclitaxel (PTX) to boost the chemo- and immuno-therapeutic synergism of cytotoxic drugs. Alendronate in BC-LNPs@PTX, a bisphosphonate to block mevalonate metabolism, works as both the structure and drug constituent in nanogranules, where alendronate coordinated with calcium ions to form the particle core. The synergy of alendronate enhances the efficacy of paclitaxel, suppresses tumor metastasis, and alters the cytotoxic mechanism. Differing from the paclitaxel-induced apoptosis, the involvement of alendronate inhibits the mevalonate metabolism, changes the mitochondrial morphology, disturbs the redox homeostasis, and causes the accumulation of mitochondrial ROS and lethal lipid peroxides (LPO). These factors finally trigger the ferroptosis of tumor cells, an immunogenic cell death mode, which remodels the suppressive tumor immune microenvironment and synergizes with immunotherapy. Therefore, by switching paclitaxel-induced apoptosis to mevalonate metabolism-triggered ferroptosis, BC-LNPs@PTX provides new insight into the development of cytotoxic drugs and highlights the potential of metabolism regulation in cancer therapy.

11.
Med Rev (2021) ; 3(3): 230-269, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37789955

RESUMO

As the fourth most important cancer management strategy except surgery, chemotherapy and radiotherapy, cancer immunotherapy has been confirmed to elicit durable antitumor effects in the clinic by leveraging the patient's own immune system to eradicate the cancer cells. However, the limited population of patients who benefit from the current immunotherapies and the immune related adverse events hinder its development. The immunosuppressive microenvironment is the main cause of the failure, which leads to cancer immune evasion and immunity cycle blockade. Encouragingly, nanotechnology has been engineered to enhance the efficacy and reduce off-target toxicity of their therapeutic cargos by spatiotemporally controlling the biodistribution and release kinetics. Among them, lipid-based nanoparticles are the first nanomedicines to make clinical translation, which are now established platforms for diverse areas. In this perspective, we discuss the available lipid-based nanoparticles in research and market here, then describe their application in cancer immunotherapy, with special emphasis on the T cells-activated and macrophages-targeted delivery system. Through perpetuating each step of cancer immunity cycle, lipid-based nanoparticles can reduce immunosuppression and promote drug delivery to trigger robust antitumor response.

12.
mBio ; 14(5): e0061123, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37712680

RESUMO

IMPORTANCE: Virus infection triggers induction of interferon (IFN)-stimulated genes (ISGs), which ironically inhibit viruses themselves. We identified Tudor domain-containing 7 (TDRD7) as a novel antiviral ISG, which inhibits viral replication by interfering with autophagy pathway. Here, we present a molecular basis for autophagy inhibitory function of TDRD7. TDRD7 interacted with adenosine monophosphate (AMP)-activated protein kinase (AMPK), the kinase that initiates autophagy, to inhibit its activation. We identified domains required for the interaction; deleting AMPK-interacting domain blocked antiAMPK and antiviral activities of TDRD7. We used primary cells and mice to evaluate the TDRD7-AMPK antiviral pathway. TDRD7-deficient primary mouse cells exhibited enhanced AMPK activation and viral replication. Finally, TDRD7 knockout mice showed increased susceptibility to respiratory virus infection. Therefore, our study revealed a new antiviral pathway of IFN and its contribution to host response. Our results have therapeutic potential; a TDRD7-derived peptide may be an effective AMPK inhibitor with application as antiviral agent.


Assuntos
Interferons , Viroses , Animais , Camundongos , Interferons/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Replicação Viral/genética , Antivirais/farmacologia , Imunidade Inata , Ribonucleoproteínas/genética
13.
Autophagy Rep ; 1(1): 83-87, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36507301

RESUMO

IRF3 (interferon regulatory factor 3) is a critical component of the antiviral innate immune response. IRF3 deficiency causes detrimental effects to the host during virus infection. Dysregulation of IRF3 functions is associated with viral, inflammatory, and hepatic diseases. Both transcriptional and pro-apoptotic activities of IRF3 are involved in the exacerbated inflammation and apoptosis in liver injury induced by ethanol and high-fat diets. Therefore, regulation of IRF3 activities has consequences, and it is a potential therapeutic target for infectious and inflammatory diseases. We recently revealed that IRF3 is degraded by a small molecule, auranofin, by activating the cellular macroautophagy/autophagy pathway. Autophagy is a catabolic pathway that contributes to cellular homeostasis and antiviral host defense. Degradation of IRF3 by autophagy may be a novel strategy used by the viruses to their benefit. In addition, IRF3 functions are harmful in other diseases, including liver injury and bacterial infection. A better understanding of the role of autophagy in regulating IRF3 functions has significant implications in developing therapeutic strategies. Therefore, autophagy provides checks and balances in the innate immune response.

14.
Nanomaterials (Basel) ; 12(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35889733

RESUMO

Superhydrophobic materials have been widely applied in rapid removal and collection of oils from oil/water mixtures for increasing damage to environment and human beings caused by oil-contaminated wastewater and oil spills. Herein, superhydrophobic materials were fabricated by a novel polypyrrole (PPy)/ZnO coating followed by hexadecyltrimethoxysilane (HDTMS) modification for versatile oil/water separation with high environmental and excellent reusability. The prepared superhydrophobic surfaces exhibited water contact angle (WCA) greater than 150° and SA less than 5°. The superhydrophobic fabric could be applied for separation of heavy oil or light oil/water mixtures and emulsions with the separation efficiencies above 98%. The coated fabric also realized highly efficient separation with harsh environmental solutions, such as acid, alkali, salt, and hot water. The superhydrophobic fabric still remained, even after 80 cycles of separation and 12 months of storage in air, proving excellent durability. These novel superhydrophobic materials have indicated great development potentials for oil/water separation in practical applications.

15.
Nanomaterials (Basel) ; 12(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36144908

RESUMO

Intelligent surfaces with controlled wettability have caught much attention in industrial oily wastewater treatment. In this study, a hygro-responsive superhydrophilic/underwater superoleophobic coating was fabricated by the liquid-phase deposition of SiO2 grafted with perfluorooctanoic acid. The wettability of the surface could realize the transformation from superhydrophilicity/underwater superoleophobicity (SHI/USOB) to superhydrophobicity/superoleophilicity (SHB/SOI), both of which exhibited excellent separation performance towards different types of oil-water mixtures with the separation efficiency higher than 99%. Furthermore, the long-chain perfluoroakyl substances on the surface could be decomposed by mixing SiO2 with TiO2 nanoparticles under UV irradiation, which could reduce the pollution to human beings and environment. It is anticipated that the prepared coating with controlled wettability could provide a feasible solution for oil-water separation.

16.
Asian J Pharm Sci ; 17(5): 697-712, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36382307

RESUMO

The combination regimen of trastuzumab (Tras) plus Nab-paclitaxel (Nab) is recommended to treat HER2-positive (HER2+) cancers. However, they exert effects in different mechanisms: Tras need to stay on cell membranes, while Nab need to be endocytosed, therefore the concurrent combination regimen may not be the best one in HER2+ tumors treatment. Caveolin-1 (Cav-1) is a key player in mediating their endocytosis and is associated with their efficacy, but few researches noticed the opposite effect of Cav-1 expression on the combination efficacy. Herein, we systematically studied the Cav-1 expression level on the combination efficacy and proposed an optimized and clinically feasible combination regimen for HER2+ Cav-1High tumor treatment. In the regimen, lovastatin (Lova) was introduced to modulate the Cav-1 expression and the results indicated that Lova could downregulate Cav-1 expression, increase Tras retention on cell membrane and enhance the in vitro cytotoxicity of Tras in HER2+ Cav-1High cells but not in HER2+ Cav-1Low cells. Therefore, by exchanging the dosing sequence of Nab and Tras, and by adding Lova at appropriate time points, the precise three-drug-sequential regimen (PTDS, Nab(D1)-Lova(D2)-Lova & Tras(D2+12 h)) was established. Compared with the concurrent regimen, the PTDS regimen exhibited a higher in vitro cytotoxicity and a stronger tumor growth inhibition in HER2+ Cav-1High tumors, which might be a promising combination regimen for these patients in clinics.

17.
Immuno ; 2(1): 153-169, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35252965

RESUMO

Virus-infected cells trigger a robust innate immune response and facilitate virus replication. Here, we review the role of autophagy in virus infection, focusing on both pro-viral and anti-viral host responses using a select group of viruses. Autophagy is a cellular degradation pathway operated at the basal level to maintain homeostasis and is induced by external stimuli for specific functions. The degradative function of autophagy is considered a cellular anti-viral immune response. However, autophagy is a double-edged sword in viral infection; viruses often benefit from it, and the infected cells can also use it to inhibit viral replication. In addition to viral regulation, autophagy pathway proteins also function in autophagy-independent manners to regulate immune responses. Since viruses have co-evolved with hosts, they have developed ways to evade the anti-viral autophagic responses of the cells. Some of these mechanisms are also covered in our review. Lastly, we conclude with the thought that autophagy can be targeted for therapeutic interventions against viral diseases.

18.
Nanoscale Horiz ; 7(7): 779-789, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35703339

RESUMO

Nano-tumor interactions are fundamental for cancer nanotherapy, and the cross-talk of nanomedicines with the extracellular matrix (ECM) is increasingly considered essential. Here, we specifically investigate the nano-ECM interactivity using drug-free nanoparticulates (NPs) and highly metastatic cancer cells as models. We discover with surprise that NPs closely bind to specific types of ECM components, namely, retraction fibers (RFs) and migrasomes, which are located at the rear of tumor cells during their migration. This interaction is observed to alter cell morphology, limit cell motion range and change cell adhesion. Importantly, NPs are demonstrated to inhibit tumor cell removal in vitro, and their anti-metastasis potential is preliminarily confirmed in vivo. Mechanically, the NPs are found to coat and form a rigid shell on the surface of migrasomes and retraction fibers via interaction with lipid raft/caveolae substructures. In this way, NPs block the recognition, endocytosis and elimination of migrasomes by their surrounding tumor cells. Thereby, NPs interfere with the cell-ECM interaction and reduce the promotion effect of migrasomes on cell movement. Additionally, NPs trigger alteration of the expression of proteins related to cell-cell adhesion and cytoskeleton organization, which also restricts cell migration. In summary, all the findings here provide a potential target for anti-tumor metastasis nanomedicines.


Assuntos
Matriz Extracelular , Neoplasias , Cavéolas/patologia , Adesão Celular , Movimento Celular , Endocitose , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Humanos
19.
Med Image Anal ; 82: 102648, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36242933

RESUMO

The task of automatic segmentation and measurement of key anatomical structures in echocardiography is critical for subsequent extraction of clinical parameters. However, the influence of boundary blur, speckle noise, and other factors increase the difficulty of fully automatically segmenting 2D ultrasound images. The previous research has addressed this challenge using convolutional neural networks (CNN), which fails to consider global contextual information and long-range dependency. To further improve the quantitative analysis of pediatric echocardiography, this paper proposes an interactive fusion transformer network (IFT-Net) for quantitative analysis of pediatric echocardiography, which achieves the bidirectional fusion between local features and global context information by constructing interactive learning between the convolution branch and the transformer branch. First, we construct a dual-attention pyramid transformer (DPT) branch to model the long-range dependency from spatial and channels and enhance the learning of global context information. Second, we design a bidirectional interactive fusion (BIF) unit that fuses the local and global features interactively, maximizes their preservation and refines the segmentation. Finally, we measure the clinical anatomical parameters through key point positioning. Based on the parasternal short-axis (PSAX) view of the heart base from pediatric echocardiography, we segment and quantify the right ventricular outflow tract (RVOT) and aorta (AO) with promising results, indicating the potential clinical application. The code is publicly available at: https://github.com/Zhaocheng1/IFT-Net.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Humanos , Criança , Processamento de Imagem Assistida por Computador/métodos , Ecocardiografia , Coração/diagnóstico por imagem , Ventrículos do Coração
20.
Viruses ; 14(9)2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36146835

RESUMO

Wastewater-based epidemiology (WBE) is a popular tool for the early indication of community spread of infectious diseases. WBE emerged as an effective tool during the COVID-19 pandemic and has provided meaningful information to minimize the spread of infection. Here, we present a combination of analyses using the correlation of viral gene copies with clinical cases, sequencing of wastewater-derived RNA for the viral mutants, and correlative analyses of the viral gene copies with the bacterial biomarkers. Our study provides a unique platform for potentially using the WBE-derived results to predict the spread of COVID-19 and the emergence of new variants of concern. Further, we observed a strong correlation between the presence of SARS-CoV-2 and changes in the microbial community of wastewater, particularly the significant changes in bacterial genera belonging to the families of Lachnospiraceae and Actinomycetaceae. Our study shows that microbial biomarkers could be utilized as prediction tools for future infectious disease surveillance and outbreak responses. Overall, our comprehensive analyses of viral spread, variants, and novel bacterial biomarkers will add significantly to the growing body of literature on WBE and COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Biomarcadores , COVID-19/epidemiologia , Humanos , Pandemias , RNA , RNA Viral , SARS-CoV-2/genética , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA