Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 24(29): 9050-9057, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39007447

RESUMO

Solid-state lithium metal batteries (SSLMBs) are a promising energy storage technology, but challenges persist including electrolyte thickness and lithium (Li) dendrite puncture. A novel three-dimensional "peapod-like" composite solid electrolyte (CSEs) with low thickness (26.8 µm), high mechanical strength, and dendrite inhibition was designed. Incorporating Li7La3Zr2O12 (LLZO) enhances both mechanical strength and ionic conductivity, stabilizing the CSE/Li interface and enabling Li symmetric batteries to stabilize for 3000 h. With structural advantages, the assembled LFP||Li and NCM811||Li cells exhibit excellent cycling performance. In addition, the constructed NCM811 pouch cell achieves a high gravimetric/volumetric energy density of 307.0 Wh kg-1/677.7 Wh L-1, which can light up LEDs under extreme conditions, demonstrating practicality and high safety. This work offers a generalized strategy for CSE design and insights into high-performance SSLMBs.

2.
ACS Nano ; 18(27): 17890-17900, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38917480

RESUMO

Ultrathin composite electrolytes hold great promise for high energy density solid-state lithium metal batteries (SSLMBs). However, finding an electrolyte that can simultaneously balance the interfacial stability of the lithium anode and high-voltage cathode is challenging. The present study utilized the both-side tape casting technique to fabricate ultrathin asymmetric composite electrolytes reinforced with polyimide (PI) fiber membrane, with a thickness of 26.8 µm. The implementation of this asymmetric structural design enables SSLMBs to attain favorable interfacial characteristics, such as exceptional resistance to lithium dendrite puncture and compatibility with high voltages. The suppression of lithium dendrite growth and the extension of the cycle life of lithium symmetric batteries by 4000 h are both experimental and theoretically demonstrated under the dual confinement of PI fiber membrane and Li7La3Zr2O12 ceramic fibers. Furthermore, the integration of multicomponent solid electrolyte interphase and cathode electrolyte interface interfacial layers into the lithium anode and high-voltage cathode enhance theirs cycling stability. With a gravimetric/volumetric energy density of 333.1 Wh kg-1/713.2 Wh L-1, the assembled LiNi0.8Co0.1Mn0.1O2 pouch cell demonstrates exceptional safety. The extensive application of this design concept to SSLMBs enables the resolution of electrode/electrolyte interface issues.

3.
J Colloid Interface Sci ; 656: 270-279, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37995397

RESUMO

Constructing an anode with fast electron transport and high cycling stability is important but challenging for large-scale applications of sodium-ion batteries (SIB). In this study, hierarchical flower-like MXene structures were synthesized using poly (methyl methacrylate) (PMMA) microsphere as templates. Subsequently, a straightforward hydrothermal reaction was utilized to anchor small-sized MoS2 nanosheets. The resulting MXene@MoS2 heterostructure exhibits a distinctive three-dimensional (3D) porous hollow architecture. This structure effectively addresses challenges related to self-aggregation of MoS2 nanosheets and volume expansion of the electrode material during Na+ insertion/extraction processes. Furthermore, the robust hetero-interface supports fast and stable electron transfer, thereby enhancing electrochemical reaction kinetics. The prepared MXene@MoS2 electrode demonstrates the specific capacity of 682.1 mA h g-1 at 0.2 A/g and the reversible capacity of 494.4 mA h g-1 after 1000 cycles at 5 A/g. It is noteworthy that the full battery assembled with the composite material as the anode can still maintain the capacity of 456.2 mA h g-1 after 80 cycles at 0.5 A/g. This outstanding reversible capacity and sustained stability over numerous cycles highlights its potential for a wide range of applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA