RESUMO
A nonlinear holographic technique is capable of processing optical information in the newly generated optical frequencies, enabling fascinating functions in laser display, security storage, and image recognition. One popular nonlinear hologram is based on a periodically poled lithium niobate (LN) crystal. However, due to the limitations of traditional fabrication techniques, the pixel size of the LN hologram is typically several micrometers, resulting in a limited field-of-voew (FOV) of several degrees. Here, we experimentally demonstrate an ultra-high-resolution LN hologram by using the laser poling technique. The minimal pixel size reaches 200 nm, and the FOV is extended above 120° in our experiments. The image distortions at large view angles are effectively suppressed through the Fourier transform. The FOV is further improved by combining multiple diffraction orders of SH fields. The ultimate FOV under our configuration is decided by a Fresnel transmission. Our results pave the way for expanding the applications of nonlinear holography to wide-view imaging and display.
RESUMO
Colorectal cancer is the second most prevalent and deadly cancer worldwide. The emergence of immune checkpoint therapy has provided a revolutionary strategy for the treatment of solid tumors. However, less than 5â¯% of colorectal cancer patients respond to immune checkpoint therapy. Thus, it is of great scientific significance to develop "potentiators" for immune checkpoint therapy. In this study, we found that knocking down different DNMT and HDAC isoforms could increase the expression of IFNs in colorectal cancer cells, which can enhance the effectiveness of immune checkpoint therapy. Therefore, the combined inhibition of DNMT and HDAC cloud synergistically enhance the effect of immunotherapy. We found that dual DNMT and HDAC inhibitors C02S could inhibit tumor growth in immunocompetent mice but not in immunocompromised nude mice, which indicates that C02S exerts its antitumor effects through the immune system. Mechanistically, C02S could increase the expression of ERVs, which generated the intracellular levels of dsRNA in tumor cells, and then promotes the expression of IFNs through the RIG-I/MDA5-MAVS signaling pathway. Moreover, C02S increased the immune infiltration of DCs and T cells in microenvironment, and enhanced the efficacy of anti-PD-L1 therapy in MC38 and CT26 mice model. These results confirmed that C02S can activate IFNs through the RIG-I/MDA5-MAVS signaling pathway, remodel the tumor immune microenvironment and enhance the efficacy of immune checkpoint therapy, which provides new evidence and solutions for the development of "potentiator" for colorectal cancer immunotherapy.
Assuntos
Antígeno B7-H1 , Neoplasias Colorretais , Inibidores de Histona Desacetilases , Inibidores de Checkpoint Imunológico , Microambiente Tumoral , Animais , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Humanos , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo , Antígeno B7-H1/imunologia , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Camundongos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Camundongos Nus , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Feminino , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferases/genéticaRESUMO
Human papillomavirus (HPV) integrating into human genome is the main cause of cervical carcinogenesis. HPV integration selection preference shows strong dependence on local genomic environment. Due to this theory, it is possible to predict HPV integration sites. However, a published bioinformatic tool is not available to date. Thus, we developed an attention-based deep learning model DeepHPV to predict HPV integration sites by learning environment features automatically. In total, 3608 known HPV integration sites were applied to train the model, and 584 reviewed HPV integration sites were used as the testing dataset. DeepHPV showed an area under the receiver-operating characteristic (AUROC) of 0.6336 and an area under the precision recall (AUPR) of 0.5670. Adding RepeatMasker and TCGA Pan Cancer peaks improved the model performance to 0.8464 and 0.8501 in AUROC and 0.7985 and 0.8106 in AUPR, respectively. Next, we tested these trained models on independent database VISDB and found the model adding TCGA Pan Cancer performed better (AUROC: 0.7175, AUPR: 0.6284) than the model adding RepeatMasker peaks (AUROC: 0.6102, AUPR: 0.5577). Moreover, we introduced attention mechanism in DeepHPV and enriched the transcription factor binding sites including BHLHA15, CHR, COUP-TFII, DMRTA2, E2A, HIC1, INR, NPAS, Nr5a2, RARa, SCL, Snail1, Sox10, Sox3, Sox4, Sox6, STAT6, Tbet, Tbx5, TEAD, Tgif2, ZNF189, ZNF416 near attention intensive sites. Together, DeepHPV is a robust and explainable deep learning model, providing new insights into HPV integration preference and mechanism. Availability: DeepHPV is available as an open-source software and can be downloaded from https://github.com/JiuxingLiang/DeepHPV.git, Contact: huzheng1998@163.com, liangjiuxing@m.scnu.edu.cn, lizheyzy@163.com.
Assuntos
Alphapapillomavirus , Aprendizado Profundo , Modelos Genéticos , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Integração Viral/genética , Alphapapillomavirus/genética , Alphapapillomavirus/metabolismo , Feminino , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/metabolismo , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismoRESUMO
MOTIVATION: Epstein-Barr virus (EBV) is one of the most prevalent DNA oncogenic viruses. The integration of EBV into the host genome has been reported to play an important role in cancer development. The preference of EBV integration showed strong dependence on the local genomic environment, which enables the prediction of EBV integration sites. RESULTS: An attention-based deep learning model, DeepEBV, was developed to predict EBV integration sites by learning local genomic features automatically. First, DeepEBV was trained and tested using the data from the dsVIS database. The results showed that DeepEBV with EBV integration sequences plus Repeat peaks and 2-fold data augmentation performed the best on the training dataset. Furthermore, the performance of the model was validated in an independent dataset. In addition, the motifs of DNA-binding proteins could influence the selection preference of viral insertional mutagenesis. Furthermore, the results showed that DeepEBV can predict EBV integration hotspot genes accurately. In summary, DeepEBV is a robust, accurate and explainable deep learning model, providing novel insights into EBV integration preferences and mechanisms. AVAILABILITYAND IMPLEMENTATION: DeepEBV is available as open-source software and can be downloaded from https://github.com/JiuxingLiang/DeepEBV.git. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
RESUMO
From initial human papillomavirus (HPV) infection and precursor stages, the development of cervical cancer takes decades. High-sensitivity HPV DNA testing is currently recommended as primary screening method for cervical cancer, whereas better triage methodologies are encouraged to provide accurate risk management for HPV-positive women. Given that virus-driven genomic variation accumulates during cervical carcinogenesis, we designed a 39 Mb custom capture panel targeting 17 HPV types and 522 mutant genes related to cervical cancer. Using capture-based next-generation sequencing, HPV integration status, somatic mutation and copy number variation were analyzed on 34 paired samples, including 10 cases of HPV infection (HPV+), 10 cases of cervical intraepithelial neoplasia (CIN) grade and 14 cases of CIN2+ (CIN2: n = 1; CIN2-3: n = 3; CIN3: n = 9; squamous cell carcinoma: n = 1). Finally, the machine learning algorithm (Random Forest) was applied to build the risk stratification model for cervical precursor lesions based on CIN2+ enriched biomarkers. Generally, HPV integration events (11 in HPV+, 25 in CIN1 and 56 in CIN2+), non-synonymous mutations (2 in CIN1, 12 in CIN2+) and copy number variations (19.1 in HPV+, 29.4 in CIN1 and 127 in CIN2+) increased from HPV+ to CIN2+. Interestingly, 'common' deletion of mitochondrial chromosome was significantly observed in CIN2+ (P = 0.009). Together, CIN2+ enriched biomarkers, classified as HPV information, mutation, amplification, deletion and mitochondrial change, successfully predicted CIN2+ with average accuracy probability score of 0.814, and amplification and deletion ranked as the most important features. Our custom capture sequencing combined with machine learning method effectively stratified the risk of cervical lesions and provided valuable integrated triage strategies.
Assuntos
Genômica/métodos , Aprendizado de Máquina , Mutação , Papillomaviridae/genética , Infecções por Papillomavirus/complicações , Medição de Risco/métodos , Neoplasias do Colo do Útero/epidemiologia , Carcinoma de Células Escamosas/epidemiologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/virologia , China/epidemiologia , Variações do Número de Cópias de DNA , Feminino , Humanos , Incidência , Infecções por Papillomavirus/virologia , Prognóstico , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/virologia , Displasia do Colo do Útero/epidemiologia , Displasia do Colo do Útero/genética , Displasia do Colo do Útero/patologia , Displasia do Colo do Útero/virologiaRESUMO
Aging is the main cause of many degenerative diseases. The skin is the largest and the most intuitive organ that reflects the aging of the body. Under the interaction of endogenous and exogenous factors, there are cumulative changes in the structure, function, and appearance of the skin, which are characterized by decreased synthesis of collagen and elastin, increased wrinkles, relaxation, pigmentation, and other aging characteristics. skin aging is inevitable, but it can be delayed. The successful isolation of mesenchymal stromal cells (MSC) in 1991 has greatly promoted the progress of cell therapy in human diseases. The International Society for Cellular Therapy (ISCT) points out that the MSC is a kind of pluripotent progenitor cells that have self-renewal ability (limited) in vitro and the potential for mesenchymal cell differentiation. This review mainly introduces the role of perinatal umbilical cord-derived MSC(UC-MSC) in the field of skin rejuvenation. An in-depth and systematic understanding of the mechanism of UC-MSCs against skin aging is of great significance for the early realization of the clinical transformation of UC-MSCs. This paper summarized the characteristics of skin aging and summarized the mechanism of UC-MSCs in skin rejuvenation reported in recent years. In order to provide a reference for further research of UC-MSCs to delay skin aging.
RESUMO
Triple-negative breast cancer (TNBC) is a unique breast cancer subtype characterized by a lack of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. Since TNBC lacks ER, PR, and HER2, there are currently no drugs that specifically target TNBC. Therefore, the development of new drugs or effective treatment strategies to target TNBC has become an urgent clinical need. Research has shown that the application of histone deacetylase (HDAC) inhibitors and DNA methyltransferase (DNMT) inhibitors leads to genomic and epigenomic instability. This, in turn, triggers the activation of pattern recognition receptors (PRRs) and subsequently activates downstream interferon (IFN) signalling pathways. In this study, the bifunctional HDAC and DNMT inhibitor J208 exhibited antitumour activity in TNBC cell lines. J208 effectively induced apoptosis and cell cycle arrest at the G0/G1 phase, inhibiting cell migration and invasion in TNBC. Moreover, this bifunctional inhibitor induced the expression of endogenous retroviruses (ERVs) and elicited a viral mimicry response, which increased the intracellular levels of double-stranded RNA (dsRNA) to activate the innate immune signalling pathway in TNBC. In summary, we demonstrated that the bifunctional inhibitor J208, which is designed to inhibit HDAC and DNMT, has potent anticancer effects, providing a new research basis for reactivating antitumour immunity by triggering innate immune signalling and offering a promising strategy for TNBC treatment.
Assuntos
Inibidores de Histona Desacetilases , Imunidade Inata , Neoplasias de Mama Triplo Negativas , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/imunologia , Humanos , Linhagem Celular Tumoral , Imunidade Inata/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Feminino , Apoptose/efeitos dos fármacos , Antineoplásicos/farmacologia , Movimento Celular/efeitos dos fármacos , AnimaisRESUMO
With the rapid development of society and the economy, population aging has become a common challenge faced by many countries in the world today. Structural and functional changes in the cardiovascular system can occur with age, increasing the incidence and severity of cardiovascular diseases in older adults. Due to the limited regenerative capacity of myocardial cells, myocardial infarction and its resulting heart failure and congenital heart disease have become the number one killer of human health. At present, the treatment of cardiovascular diseases includes drug therapy and nondrug therapy. Nondrug therapy mainly includes minimally invasive interventional therapy, surgical diagnosis and treatment, and cell therapy. Long-term drug treatment may cause headache due to vasodilation, lower blood pressure, digestive system dysfunction and other side effects. Surgical treatment is traumatic, difficult to treat, and expensive. In recent years, stem cell therapy has exhibited broad application prospects in basic and clinical research on cardiovascular disease because of its plasticity, self-renewal and multidirectional differentiation potential. Therefore, this paper looks at stem cell therapy for diseases, reviews recent advances in the mechanism and clinical transformation of cardiovascular aging and related diseases in China, and briefly discusses the development trend and future prospects of cardiovascular aging research.
RESUMO
BACKGROUND: Intestinal disease is a common disease, which can cause serious digestion and absorption disorders, endanger the lives of patients and seriously affect the quality of life of people. Finding an effective treatment is a difficult problem at present, and stem cell therapy as a treatment has high application potential in intestinal-related diseases. PURPOSE: This paper mainly summarizes the mechanism, research progress and future development trend of stem cells in the treatment of intestinal diseases in the past decade, hoping to provide a reference for future researchers in the research and application of stem cells and intestinal diseases. METHODS: Stem cells, inflammatory bowel diseases, Crohn's disease, radiation-induced intestinal injury, radiation enterocolitis, and extracellular vesicles were used as search terms. Relevant references in the past ten years were searched in CNKI journal full-text database, PubMed database, VIP network and Wanfang medical network, and 80 literature studies meeting the requirements were finally included for review. RESULTS: This paper summarizes the research and application of stem cells in intestinal diseases from 2012 to 2021, and expounds on the specific mechanism of stem cells in the treatment of intestinal diseases. It has been found that stem cells can treat intestinal injury or inflammation in different ways. CONCLUSION: Future stem cells may also be used to reverse the natural aging of intestinal function, improve intestinal function, and strengthen gastrointestinal function.
Assuntos
Doença de Crohn , Doenças Inflamatórias Intestinais , Humanos , Qualidade de Vida , Doença de Crohn/tratamento farmacológico , Doenças Inflamatórias Intestinais/terapia , Transplante de Células-Tronco , InflamaçãoRESUMO
We report the successful fabrication of high-aspect-ratio lithium niobate (LN) nanostructures by using femtosecond-laser-assisted chemical etching. In this technique, a 1 kHz femtosecond laser is first used to induce local modifications inside the LN crystal. Then, selective chemical wet etching is conducted using a buffered oxide etch (BOE) solution. The etching rate in the laser-modified area reaches 2 µm h-1, which is enhanced by a factor of â¼660 in comparison to previous reports without laser irradiation. Such high selectivity in chemical etching helps realize high-performance maskless nanolithography in lithium niobate. In the experiment, we have fabricated high-quality LN nanohole arrays. The nanohole size reaches â¼100 nm and its aspect ratio is above 40 : 1. The minimal period of the LN hole array is 300 nm. Our work paves a way to fabricate LN nano-integrated devices for advanced optic and electronic applications.
RESUMO
ABSTRACT: As human life expectancy continues to increase and the birth rate continues to decline, the phenomenon of aging is becoming more prominent worldwide. Therefore, addressing the problems associated with global aging has become a current research focus. The main manifestations of human aging are structural degeneration and functional decline of aging tissues and organs, quality of life decline, decreased ability to resist diseases, and high incidence rates of a variety of senile degenerative diseases. Thus far, no ideal treatments have been found. Stem cell (SC) therapies have broad application prospects in the field of regenerative medicine due to the inherent biological characteristics of SCs, such as their plasticity, self-renewal, and multidirectional differentiation potential. Thus, SCs could delay or even reverse aging. This manuscript reviews the causes of human aging, the biological characteristics of SCs, and research progress on age reversal.
Assuntos
Envelhecimento , Qualidade de Vida , Diferenciação Celular , Humanos , Medicina Regenerativa , Células-TroncoRESUMO
A genome editing tool targeting the high-risk human papillomavirus (HPV) oncogene is a promising therapeutic strategy to treat HPV-related cervical cancer. To improve gene knockout efficiency, we developed a gene knockout chain reaction (GKCR) method for continually generating mutagenic disruptions and used this method to disrupt the HPV18 E6 and E7 genes. We verified that the GKCR Cas9/guide RNA (gRNA) cassettes could integrated into the targeted loci via homology-independent targeted insertion (HITI). The qPCR results revealed that the GKCR method enabled a relatively higher Cas9/gRNA cassette insertion rate than a control method (the common CRISPR-Cas9 strategy). Tracking of Indels by DEcomposition (TIDE) assay results showed that the GKCR method produced a significantly higher percentage of insertions or deletions (indels) in the HPV18 E6 and E7 genes. Furthermore, by targeting the HPV18 E6/E7 oncogenes, we found that the GKCR method significantly upregulated the P53/RB proteins and inhibited the proliferation and motility of HeLa cells. The GKCR method significantly improved the gene knockout efficiency of the HPV18 E6/E7 oncogenes, which might provide new insights into treatment of HPV infection and related cervical cancer.
RESUMO
Genome editing tools targeting high-risk human papillomavirus (HPV) oncogene could be a promising therapeutic strategy for the treatment of HPV-related cervical cancer. We aimed to improve the editing efficiency and detect off-target effects concurrently for the clinical translation strategy by using CRISPR-Cas9 system co-transfected with 34nt non-homologous double-stranded oligodeoxynucleotide (dsODN). We firstly tested this strategy on targeting the Green Fluorescent Protein (GFP) gene, of which the expression is easily observed. Our results showed that the GFP+ cells were significantly decreased when using GFP-sgRNAs with dsODN, compared to using GFP-sgRNAs without donors. By PCR and Sanger sequencing, we verified the dsODN integration into the break sites of the GFP gene. And by amplicon sequencing, we observed that the indels% of the targeted site on the GFP gene was increased by using GFP-sgRNAs with dsODN. Next, we went on to target the HPV18 E7 oncogene by using single E7-sgRNA and multiplexed E7-sgRNAs respectively. Whenever using single sgRNA or multiplexed sgRNAs, the mRNA expression of HPV18 E7 oncogene was significantly decreased when adding E7-sgRNAs with dsODN, compared to E7-sgRNAs without donor. And the indels% of the targeted sites on the HPV18 E7 gene was markedly increased by adding dsODN with E7-sgRNAs. Finally, we performed GUIDE-Seq to verify that the integrated dsODN could serve as the marker to detect off-target effects in using single or multiplexed two sgRNAs. And we detected fewer on-target reads and off-target sites in multiplexes compared to the single sgRNAs when targeting the GFP and the HPV18 E7 genes. Together, CRISPR-Cas9 system co-transfected with 34nt dsODN concurrently improved the editing efficiency and monitored off-target effects, which might provide new insights in the treatment of HPV infections and related cervical cancer.
Assuntos
Infecções por Papillomavirus , Neoplasias do Colo do Útero , Sistemas CRISPR-Cas/genética , Feminino , Humanos , Mutagênicos , Oligodesoxirribonucleotídeos , Oncogenes , Infecções por Papillomavirus/genética , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/terapiaRESUMO
Zinc-finger nucleases (ZFNs), transcription activator-like endonucleases (TALENs), and CRISPR-associated Cas9 endonucleases are three major generations of genome editing tools. However, no parallel comparison about the efficiencies and off-target activity of the three nucleases has been reported, which is critical for the final clinical decision. We for the first time developed the genome-wide unbiased identification of double-stranded breaks enabled by sequencing (GUIDE-seq) method in ZFNs and TALENs with novel bioinformatics algorithms to evaluate the off-targets. By targeting human papillomavirus 16 (HPV16), we compared the performance of ZFNs, TALENs, and SpCas9 in vivo. Our data showed that ZFNs with similar targets could generate distinct massive off-targets (287-1,856), and the specificity could be reversely correlated with the counts of middle "G" in zinc finger proteins (ZFPs). We also compared the TALENs with different N-terminal domains (wild-type [WT]/αN/ßN) and G recognition modules (NN/NH) and found the design (αN or NN) to improve the efficiency of TALEN inevitably increased off-targets. Finally, our results showed that SpCas9 was more efficient and specific than ZFNs and TALENs. Specifically, SpCas9 had fewer off-target counts in URR (SpCas9, n = 0; TALEN, n = 1; ZFN, n = 287), E6 (SpCas9, n = 0; TALEN, n = 7), and E7 (SpCas9, n = 4; TALEN, n = 36). Taken together, we suggest that for HPV gene therapies, SpCas9 is a more efficient and safer genome editing tool. Our off-target data could be used to improve the design of ZFNs and TALENs, and the universal in vivo off-target detection pipeline for three generations of artificial nucleases provided useful tools for genome engineering-based gene therapy.
RESUMO
BACKGROUND: The EGFR [epidermal growth factor receptor (erythroblastic leukemia viral (v-erb-b) oncogene homolog, avian)] gene is known to harbor genomic alterations in advanced lung cancer involving gene amplification and kinase mutations that predict the clinical response to EGFR-targeted inhibitors. Methods for detecting such molecular changes in lung cancer tumors are desirable. METHODS: We used a nanofluidic digital PCR array platform and 16 cell lines and 20 samples of genomic DNA from resected tumors (stages I-III) to quantify the relative numbers of copies of the EGFR gene and to detect mutated EGFR alleles in lung cancer. We assessed the relative number of EGFR gene copies by calculating the ratio of the number of EGFR molecules (measured with a 6-carboxyfluorescein-labeled Scorpion assay) to the number of molecules of the single-copy gene RPP30 (ribonuclease P/MRP 30kDa subunit) (measured with a 6-carboxy-X-rhodamine-labeled TaqMan assay) in each panel. To assay for the EGFR L858R (exon 21) mutation and exon 19 in-frame deletions, we used the ARMS and Scorpion technologies in a DxS/Qiagen EGFR29 Mutation Test Kit for the digital PCR array. RESULTS: The digital array detected and quantified rare gefitinib/erlotinib-sensitizing EGFR mutations (0.02%-9.26% abundance) that were present in formalin-fixed, paraffin-embedded samples of early-stage resectable lung tumors without an associated increase in gene copy number. Our results also demonstrated the presence of intratumor molecular heterogeneity for the clinically relevant EGFR mutated alleles in these early-stage lung tumors. CONCLUSIONS: The digital PCR array platform allows characterization and quantification of oncogenes, such as EGFR, at the single-molecule level. Use of this nanofluidics platform may provide deeper insight into the specific roles of clinically relevant kinase mutations during different stages of lung tumor progression and may be useful in predicting the clinical response to EGFR-targeted inhibitors.
Assuntos
DNA de Neoplasias/genética , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Análise Mutacional de DNA , Progressão da Doença , Receptores ErbB/antagonistas & inibidores , Feminino , Genoma Humano/genética , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Estadiamento de Neoplasias , Reação em Cadeia da Polimerase , Valor Preditivo dos Testes , Células Tumorais CultivadasRESUMO
BACKGROUND: The current cervical cancer screening strategies based on Papanicolaou (Pap) and Human papillomavirus (HPV) tests receive great achievement but still exhibit many limitations in clinical practice. Exploring new biomarkers as stratified management method in HPV primary screening is becoming the tendency of current research. METHODS: Immunocytochemistry (ICC) of FHIT and C-MYC were performed on exfoliated cervical cells from 197 eligible high-risk HPV positive women. Mann-Whitney U test, Pearson Chi-Square test, logistic regression analysis and receiver operating characteristic (ROC) curves were used to assess the diagnostic efficiency. RESULTS: ICC staining intensity of FHIT and C-MYC in high-grade cervical intraepithelial neoplasia (CIN) specimens was significantly different from low-grade CIN and normal specimens. Compared with Pap test, ROC analysis of ICC in detecting high-grade CIN resulted in a larger area under the curve (AUC) (0.805 and 0.814 vs 0.723, p< 0.001). FHIT achieved higher sensitivity than Pap test (79.41% vs 66.67%, p= 0.04). Logistic regression analysis of the combination of two biomarkers led to higher AUC value, specificity and PPV than any single biomarker. CONCLUSIONS: The utility of FHIT and C-MYC ICC analysis in cervical exfoliated cells of HPV-positive women displayed superior diagnostic potential and may improve clinical performance of cervical cancer screening.
Assuntos
Hidrolases Anidrido Ácido/biossíntese , Proteínas de Neoplasias/biossíntese , Papillomaviridae/isolamento & purificação , Infecções por Papillomavirus/metabolismo , Proteínas Proto-Oncogênicas c-myc/biossíntese , Displasia do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/metabolismo , Hidrolases Anidrido Ácido/genética , Hidrolases Anidrido Ácido/metabolismo , Adulto , Idoso , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade , Gradação de Tumores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/virologia , Displasia do Colo do Útero/genética , Displasia do Colo do Útero/patologia , Displasia do Colo do Útero/virologiaRESUMO
Persistent high-risk HPV infection is the main factor for cervical cancer. HPV E7 oncogene plays an important role in HPV carcinogenesis. Down-regulation of E7 oncogene expression could induce growth inhibition in HPV-positive cells and thus treats HPV related cervical cancer. Here we developed a non-virus gene vector based on poly(amide-amine)-poly(ß-amino ester) hyperbranched copolymer (hPPC) for the delivery of CRISPR/Cas9 system to specifically cleave HPV E7 oncogene in HPV-positive cervical cancer cells. The diameter of polyplex nanoparticles (NPs) formed by hPPCs/linear poly(ß-amino ester) (PBAE) and plasmids were approximately 300 nm. These hPPCs/PBAE-green fluorescence protein plasmids polyplex NPs showed high transfection efficiency and low toxicity in cells and mouse organs. By cleaving HPV16 E7 oncogene, reducing the expression of HPV16 E7 protein and increasing intracellular retinoblastoma 1 (RB1) amount, hPPCs/PBAE-CRISPR/Cas9 therapeutic plasmids polyplex NPs, especially highly branched hPPC1-plasmids polyplex NPs, exhibited strong growth inhibition of cervical cancer cells in vitro and xenograft tumors in nude mice. Together, the hPPCs/PBAE polyplex NPs to deliver HPV16 E7 targeted CRISPR/Cas9 system in this study could potentially be applied to treat HPV-related cervical cancer.
Assuntos
Infecções por Papillomavirus , Polímeros , Neoplasias do Colo do Útero , Animais , Sistemas CRISPR-Cas , Sistemas de Liberação de Medicamentos , Ésteres , Feminino , Humanos , Camundongos , Camundongos Nus , Proteínas E7 de Papillomavirus/genética , Infecções por Papillomavirus/terapia , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/terapiaRESUMO
BACKGROUND: Gene therapy has held promises for treating specific genetic diseases. However, the key to clinical application depends on effective gene delivery. METHODS: Using a large animal model, we developed two pharmaceutical formulations for gene delivery in the pigs' vagina, which were made up of poly (ß-amino ester) (PBAE)-plasmid polyplex nanoparticles (NPs) based two gel materials, modified montmorillonite (mMMT) and hectorite (HTT). FINDINGS: By conducting flow cytometry of the cervical cells, we found that PBAE-GFP-NPs-mMMT gel was more efficient than PBAE-GFP-NPs-HTT gel in delivering exogenous DNA intravaginally. Next, we designed specific CRISPR/SpCas9 sgRNAs targeting porcine endogenous retroviruses (PERVs) and evaluated the genome editing efficacy in vivo. We discovered that PERV copy number in vaginal epithelium could be significantly reduced by the local delivery of the PBAE-SpCas9/sgRNA NPs-mMMT gel. Comparable genome editing results were also obtained by high-fidelity version of SpCas9, SpCas9-HF1 and eSpCas9, in the mMMT gel. Further, we confirmed that the expression of topically delivered SpCas9 was limited to the vagina/cervix and did not diffuse to nearby organs, which was relatively safe with low toxicity. INTERPRETATION: Our data suggested that the PBAE-NPs mMMT vaginal gel is an effective preparation for local gene therapy, yielding insights into novel therapeutic approaches to sexually transmitted disease in the genital tract. FUNDING: This work was supported by the National Science and Technology Major Project of the Ministry of science and technology of China (No. 2018ZX10301402); the National Natural Science Foundation of China (81761148025, 81871473 and 81402158); Guangzhou Science and Technology Programme (No. 201704020093); National Ten Thousand Plan-Young Top Talents of China, Fundamental Research Funds for the Central Universities (17ykzd15 and 19ykyjs07); Three Big Constructions-Supercomputing Application Cultivation Projects sponsored by National Supercomputer Center In Guangzhou; the National Research FFoundation (NRF) South Africa under BRICS Multilateral Joint Call for Proposals; grant 17-54-80078 from the Russian Foundation for Basic Research.
Assuntos
Colo do Útero/citologia , Retrovirus Endógenos/genética , Dosagem de Genes/efeitos dos fármacos , Polímeros/química , RNA Guia de Cinetoplastídeos/administração & dosagem , Administração Intravaginal , Animais , Bentonita/química , Sistemas CRISPR-Cas , Células Cultivadas , Colo do Útero/química , Retrovirus Endógenos/efeitos dos fármacos , Feminino , Edição de Genes , Terapia Genética , Camundongos , Modelos Animais , Nanopartículas , Plasmídeos/administração & dosagem , Plasmídeos/genética , Silicatos/química , Suínos , Cremes, Espumas e Géis VaginaisRESUMO
Sustained infection of high-risk human papillomavirus (HR-HPVs), especially HPV16 and HPV18, is a major cause of cervical cancer. E6 and E7 oncoproteins, encoded by the HPV genome, are critical for transformation and maintenance of malignant phenotypes of cervical cancer. Here, we used an emerging programmable clustered regularly interspaced short palindromic repeat (CRISPR)/Cas13a system to cleave HPV 16/18 E6/E7 messenger RNAs (mRNAs). The results showed that customized CRISPR/Cas13a system effectively and specifically knocked down HPV 16/18 E6/E7 mRNAs, inducing growth inhibition and apoptosis in HPV16-positive SiHa and HPV18-positive HeLa Cell lines, but not in HPV-negative C33A cell line. Simultaneously, we detected downregulation of E6/E7 oncoproteins and upregulation of tumor suppressor P53 and RB proteins. In addition, we used subcutaneous xenograft tumor growth assays to find that the weight and volume of tumors in the SiHa-16E6CR1 group knocked down by the CRISPR/Cas13a system were significantly lower than those in the SiHa-VECTOR group lacking crRNA. Our study demonstrated that targeting HPV E6/E7 mRNAs by the CRISPR/Cas13a system may be a candidate therapeutic strategy for HPV-related cervical cancer.