Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mov Disord ; 39(2): 360-369, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37899683

RESUMO

BACKGROUND: Supplementation of nicotinamide riboside (NR) ameliorates neuropathology in animal models of ataxia telangiectasia (A-T). In humans, short-term NR supplementation showed benefits in neurological outcome. OBJECTIVES: The study aimed to investigate the safety and benefits of long-term NR supplementation in individuals with A-T. METHODS: A single-arm, open-label clinical trial was performed in individuals with A-T, receiving NR over a period of 2 years. Biomarkers and clinical examinations were used to assess safety parameters. Standardized and validated neuromotor tests were used to monitor changes in neurological symptoms. Using generalized mixed models, test results were compared to expected disease progression based on historical data. RESULTS: NAD+ concentrations increased rapidly in peripheral blood and stabilized at a higher level than baseline. NR supplementation was well tolerated for most participants. The total scores in the neuromotor test panels, as evaluated at the 18-month time point, improved for all but one participant, primarily driven by improvements in coordination subscores and eye movements. A comparison with historical data revealed that the progression of certain neuromotor symptoms was slower than anticipated. CONCLUSIONS: Long-term use of NR appears to be safe and well tolerated, and it improves motor coordination and eye movements in patients with A-T of all ages. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Ataxia Telangiectasia , Niacinamida , Animais , Humanos , Ataxia Telangiectasia/tratamento farmacológico , Movimentos Oculares , Niacinamida/farmacologia , Niacinamida/uso terapêutico , Niacinamida/análogos & derivados , Compostos de Piridínio/uso terapêutico
2.
Alzheimers Dement ; 20(6): 4212-4233, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38753870

RESUMO

BACKGROUND: Compromised autophagy, including impaired mitophagy and lysosomal function, plays pivotal roles in Alzheimer's disease (AD). Urolithin A (UA) is a gut microbial metabolite of ellagic acid that stimulates mitophagy. The effects of UA's long-term treatment of AD and mechanisms of action are unknown. METHODS: We addressed these questions in three mouse models of AD with behavioral, electrophysiological, biochemical, and bioinformatic approaches. RESULTS: Long-term UA treatment significantly improved learning, memory, and olfactory function in different AD transgenic mice. UA also reduced amyloid beta (Aß) and tau pathologies and enhanced long-term potentiation. UA induced mitophagy via increasing lysosomal functions. UA improved cellular lysosomal function and normalized lysosomal cathepsins, primarily cathepsin Z, to restore lysosomal function in AD, indicating the critical role of cathepsins in UA-induced therapeutic effects on AD. CONCLUSIONS: Our study highlights the importance of lysosomal dysfunction in AD etiology and points to the high translational potential of UA. HIGHLIGHTS: Long-term urolithin A (UA) treatment improved learning, memory, and olfactory function in Alzheimer's disease (AD) mice. UA restored lysosomal functions in part by regulating cathepsin Z (Ctsz) protein. UA modulates immune responses and AD-specific pathophysiological pathways.


Assuntos
Doença de Alzheimer , Cumarínicos , Modelos Animais de Doenças , Lisossomos , Camundongos Transgênicos , Mitofagia , Doença de Alzheimer/tratamento farmacológico , Animais , Cumarínicos/farmacologia , Cumarínicos/uso terapêutico , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Camundongos , Mitofagia/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Cognição/efeitos dos fármacos
3.
Pharmacol Res ; 194: 106835, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37348691

RESUMO

Maintaining mitochondrial homeostasis is a potential therapeutic strategy for various diseases, including neurodegenerative diseases, cardiovascular diseases, metabolic disorders, and cancer. Selective degradation of mitochondria by autophagy (mitophagy) is a fundamental mitochondrial quality control mechanism conserved from yeast to humans. Indeed, small-molecule modulators of mitophagy are valuable pharmaceutical tools that can be used to dissect complex biological processes and turn them into potential drugs. In the past few years, pharmacological regulation of mitophagy has shown promising therapeutic efficacy in various disease models. However, with the increasing number of chemical mitophagy modulator studies, frequent methodological flaws can be observed, leading some studies to draw unreliable or misleading conclusions. This review attempts (a) to summarize the molecular mechanisms of mitophagy; (b) to propose a Mitophagy Modulator Characterization System (MMCS); (c) to perform a comprehensive analysis of methods used to characterize mitophagy modulators, covering publications over the past 20 years; (d) to provide novel targets for pharmacological intervention of mitophagy. We believe this review will provide a panorama of current research on chemical mitophagy modulators and promote the development of safe and robust mitophagy modulators with therapeutic potential by introducing high methodological standards.


Assuntos
Doenças Cardiovasculares , Neoplasias , Humanos , Mitofagia , Autofagia , Mitocôndrias/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
4.
EMBO Rep ; 21(11): e51652, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33155437

RESUMO

Mitochondrial homeostasis is necessary for the maintenance of cellular function and neuronal survival. Mitochondrial quality is tightly regulated by mitophagy, in which defective/superfluous mitochondria are degraded and recycled. Here, Hara et al demonstrate that induction of mitophagy via iron depletion suppresses the development of hepatocellular carcinoma (HCC). This work suggests turning up mitophagy as a potential therapeutic strategy against liver cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/genética , Ferritinas , Humanos , Ferro/metabolismo , Neoplasias Hepáticas/genética , Mitofagia
5.
Brain ; 144(9): 2759-2770, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34428276

RESUMO

The molecular link between amyloid-ß plaques and neurofibrillary tangles, the two pathological hallmarks of Alzheimer's disease, is still unclear. Increasing evidence suggests that amyloid-ß peptide activates multiple regulators of cell cycle pathways, including transcription factors CDKs and E2F1, leading to hyperphosphorylation of tau protein. However, the exact pathways downstream of amyloid-ß-induced cell cycle imbalance are unknown. Here, we show that PAX6, a transcription factor essential for eye and brain development which is quiescent in adults, is increased in the brains of patients with Alzheimer's disease and in APP transgenic mice, and plays a key role between amyloid-ß and tau hyperphosphorylation. Downregulation of PAX6 protects against amyloid-ß peptide-induced neuronal death, suggesting that PAX6 is a key executor of the amyloid-ß toxicity pathway. Mechanistically, amyloid-ß upregulates E2F1, followed by the induction of PAX6 and c-Myb, while Pax6 is a direct target for both E2F1 and its downstream target c-Myb. Furthermore, PAX6 directly regulates transcription of GSK-3ß, a kinase involved in tau hyperphosphorylation and neurofibrillary tangles formation, and its phosphorylation of tau at Ser356, Ser396 and Ser404. In conclusion, we show that signalling pathways that include CDK/pRB/E2F1 modulate neuronal death signals by activating downstream transcription factors c-Myb and PAX6, leading to GSK-3ß activation and tau pathology, providing novel potential targets for pharmaceutical intervention.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/toxicidade , Fator de Transcrição PAX6/metabolismo , Fragmentos de Peptídeos/toxicidade , Proteínas tau/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
6.
Cytogenet Genome Res ; 161(6-7): 297-304, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34433164

RESUMO

Werner syndrome (WS) is an accelerated ageing disease caused by multiple mutations in the gene encoding the Werner DNA helicase (WRN). The major clinical features of WS include wrinkles, grey hair, osteoporosis, and metabolic phenomena such as atherosclerosis, diabetes, and fatty liver, and resemble those seen in normal ageing, but occur earlier, in middle age. Defective DNA repair resulting from mutations in WRN explain the majority of the clinical features of WS, but the underlying mechanisms driving the larger metabolic dysfunction remain elusive. Recent studies in animal models of WS and in WS patient cells and blood samples suggest the involvement of impaired mitophagy, NAD+ depletion, and accumulation of damaged mitochondria in metabolic dysfunction. This mini-review summarizes recent progress in the understanding of the molecular mechanisms of metabolic dysfunction in WS, with the involvement of DNA damage, mitochondrial dysfunction, mitophagy reduction, stem cell impairment, and senescence. Future studies on NAD+ and mitophagy may shed light on potential therapeutic strategies for the WS patients.


Assuntos
Envelhecimento/genética , Dano ao DNA , Mitocôndrias/genética , Mitofagia/genética , Células-Tronco/metabolismo , Síndrome de Werner/genética , Animais , Senescência Celular/genética , Humanos , Mitocôndrias/metabolismo , Telômero/genética , Telômero/metabolismo , Síndrome de Werner/metabolismo , Síndrome de Werner/patologia
7.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201700

RESUMO

DNA repair ensures genomic stability to achieve healthy ageing, including cognitive maintenance. Mutations on genes encoding key DNA repair proteins can lead to diseases with accelerated ageing phenotypes. Some of these diseases are xeroderma pigmentosum group A (XPA, caused by mutation of XPA), Cockayne syndrome group A and group B (CSA, CSB, and are caused by mutations of CSA and CSB, respectively), ataxia-telangiectasia (A-T, caused by mutation of ATM), and Werner syndrome (WS, with most cases caused by mutations in WRN). Except for WS, a common trait of the aforementioned progerias is neurodegeneration. Evidence from studies using animal models and patient tissues suggests that the associated DNA repair deficiencies lead to depletion of cellular nicotinamide adenine dinucleotide (NAD+), resulting in impaired mitophagy, accumulation of damaged mitochondria, metabolic derailment, energy deprivation, and finally leading to neuronal dysfunction and loss. Intriguingly, these features are also observed in Alzheimer's disease (AD), the most common type of dementia affecting more than 50 million individuals worldwide. Further studies on the mechanisms of the DNA repair deficient premature ageing diseases will help to unveil the mystery of ageing and may provide novel therapeutic strategies for AD.


Assuntos
Envelhecimento/patologia , Doença de Alzheimer/complicações , Dano ao DNA , Instabilidade Genômica , Doenças Neurodegenerativas/patologia , Animais , Reparo do DNA , Humanos , Mutação , Doenças Neurodegenerativas/etiologia
8.
Biogerontology ; 20(3): 255-269, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30666569

RESUMO

Aging is a natural and unavoidable part of life. However, aging is also the primary driver of the dominant human diseases, such as cardiovascular disease, cancer, and neurodegenerative diseases, including Alzheimer's disease. Unraveling the sophisticated molecular mechanisms of the human aging process may provide novel strategies to extend 'healthy aging' and the cure of human aging-related diseases. Werner syndrome (WS), is a heritable human premature aging disease caused by mutations in the gene encoding the Werner (WRN) DNA helicase. As a classical premature aging disease, etiological exploration of WS can shed light on the mechanisms of normal human aging and facilitate the development of interventional strategies to improve healthspan. Here, we summarize the latest progress of the molecular understandings of WRN protein, highlight the advantages of using different WS model systems, including Caenorhabditis elegans, Drosophila melanogaster and induced pluripotent stem cell (iPSC) systems. Further studies on WS will propel drug development for WS patients, and possibly also for normal age-related diseases.


Assuntos
Envelhecimento/patologia , Síndrome de Werner/patologia , Animais , Caenorhabditis elegans/fisiologia , Drosophila melanogaster/fisiologia , Humanos , Modelos Biológicos , Mutação , Síndrome de Werner/genética , Síndrome de Werner/terapia
9.
J Immunol ; 196(4): 1799-809, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26800870

RESUMO

The antimicrobial peptide cathelicidin is critical for protection against different kinds of microbial infection. This study sought to elucidate the protective action of cathelicidin against Helicobacter pylori infection and its associated gastritis. Exogenous cathelicidin was found to inhibit H. pylori growth, destroy the bacteria biofilm, and induce morphological alterations in H. pylori membrane. Additionally, knockdown of endogenous cathelicidin in human gastric epithelial HFE-145 cells markedly increased the intracellular survival of H. pylori. Consistently, cathelicidin knockout mice exhibited stronger H. pylori colonization, higher expression of proinflammatory cytokines IL-6, IL-1ß, and ICAM1, and lower expression of the anti-inflammatory cytokine IL-10 in the gastric mucosa upon H. pylori infection. In wild-type mice, H. pylori infection also stimulated gastric epithelium-derived cathelicidin production. Importantly, pretreatment with bioengineered Lactococcus lactis that actively secretes cathelicidin significantly increased mucosal cathelicidin levels and reduced H. pylori infection and the associated inflammation. Moreover, cathelicidin strengthened the barrier function of gastric mucosa by stimulating mucus synthesis. Collectively, these findings indicate that cathelicidin plays a significant role as a potential natural antibiotic for H. pylori clearance and a therapeutic agent for chronic gastritis.


Assuntos
Catelicidinas/imunologia , Mucosa Gástrica/imunologia , Gastrite/imunologia , Infecções por Helicobacter/imunologia , Animais , Peptídeos Catiônicos Antimicrobianos , Linhagem Celular , Modelos Animais de Doenças , Imunofluorescência , Mucosa Gástrica/microbiologia , Helicobacter pylori/imunologia , Humanos , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Varredura , RNA Interferente Pequeno , Reação em Cadeia da Polimerase em Tempo Real , Transfecção
10.
Artigo em Inglês | MEDLINE | ID: mdl-37848251

RESUMO

NAD+, the essential metabolite involved in multiple reactions such as the regulation of cellular metabolism, energy production, DNA repair, mitophagy and autophagy, inflammation, and neuronal function, has been the subject of intense research in the field of aging and disease over the last decade. NAD+ levels decline with aging and in some age-related diseases, and reduction in NAD+ affects all the hallmarks of aging. Here, we present an overview of the discovery of NAD+, the cellular pathways of producing and consuming NAD+, and discuss how imbalances in the production rate and cellular request of NAD+ likely contribute to aging and age-related diseases including neurodegeneration. Preclinical studies have revealed great potential for NAD+ precursors in promotion of healthy aging and improvement of neurodegeneration. This has led to the initiation of several clinical trials with NAD+ precursors to treat accelerated aging, age-associated dysfunctions, and diseases including Alzheimer's and Parkinson's. NAD supplementation has great future potential clinically, and these studies will also provide insight into the mechanisms of aging.


Assuntos
Envelhecimento , NAD , Humanos , NAD/metabolismo , Envelhecimento/genética , Cognição , Neurônios/metabolismo , Autofagia
11.
CNS Neurosci Ther ; 30(2): e14357, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37438991

RESUMO

OBJECTIVES: The ATN's different modalities (fluids and neuroimaging) for each of the Aß (A), tau (T), and neurodegeneration (N) elements are used for the biological diagnosis of Alzheimer's disease (AD). We aim to identify which ATN category achieves the highest potential for diagnosis and predictive accuracy of longitudinal cognitive decline. METHODS: Based on the availability of plasma ATN biomarkers (plasma-derived Aß42/40 , p-tau181, NFL, respectively), CSF ATN biomarkers (CSF-derived Aß42 /Aß40 , p-tau181, NFL), and neuroimaging ATN biomarkers (18F-florbetapir (FBP) amyloid-PET, 18F-flortaucipir (FTP) tau-PET, and fluorodeoxyglucose (FDG)-PET), a total of 2340 participants were selected from ADNI. RESULTS: Our data analysis indicates that the area under curves (AUCs) of CSF-A, neuroimaging-T, and neuroimaging-N were ranked the top three ATN candidates for accurate diagnosis of AD. Moreover, neuroimaging ATN biomarkers display the best predictive ability for longitudinal cognitive decline among the three categories. To note, neuroimaging-T correlates well with cognitive performances in a negative correlation manner. Meanwhile, participants in the "N" element positive group, especially the CSF-N positive group, experience the fastest cognitive decline compared with other groups defined by ATN biomarkers. In addition, the voxel-wise analysis showed that CSF-A related to tau accumulation and FDG-PET indexes more strongly in subjects with MCI stage. According to our analysis of the data, the best three ATN candidates for a precise diagnosis of AD are CSF-A, neuroimaging-T, and neuroimaging-N. CONCLUSIONS: Collectively, our findings suggest that plasma, CSF, and neuroimaging biomarkers differ considerably within the ATN framework; the most accurate target biomarkers for diagnosing AD were the CSF-A, neuroimaging-T, and neuroimaging-N within each ATN modality. Moreover, neuroimaging-T and CSF-N both show excellent ability in the prediction of cognitive decline in two different dimensions.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico por imagem , Fluordesoxiglucose F18 , Neuroimagem , Disfunção Cognitiva/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Biomarcadores , Proteínas tau , Peptídeos beta-Amiloides
12.
Artigo em Inglês | MEDLINE | ID: mdl-38289789

RESUMO

Unhealthy aging poses a global challenge with profound healthcare and socioeconomic implications. Slowing down the aging process offers a promising approach to reduce the burden of a number of age-related diseases, such as dementia, and promoting healthy longevity in the old population. In response to the challenge of the aging population and with a view to the future, Norway and the United Kingdom are fostering collaborations, supported by a "Money Follows Cooperation agreement" between the 2 nations. The inaugural Norway-UK joint meeting on aging and dementia gathered leading experts on aging and dementia from the 2 nations to share their latest discoveries in related fields. Since aging is an international challenge, and to foster collaborations, we also invited leading scholars from 11 additional countries to join this event. This report provides a summary of the conference, highlighting recent progress on molecular aging mechanisms, genetic risk factors, DNA damage and repair, mitophagy, autophagy, as well as progress on a series of clinical trials (eg, using NAD+ precursors). The meeting facilitated dialogue among policymakers, administrative leaders, researchers, and clinical experts, aiming to promote international research collaborations and to translate findings into clinical applications and interventions to advance healthy aging.


Assuntos
Envelhecimento , Demência , Humanos , Idoso , Longevidade , Demência/prevenção & controle , Demência/epidemiologia , Reino Unido , Noruega
13.
Geroscience ; 45(4): 2213-2228, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36826621

RESUMO

Short telomeres are a defining feature of telomere biology disorders (TBDs), including dyskeratosis congenita (DC), for which there is no effective general cure. Patients with TBDs often experience bone marrow failure. NAD, an essential metabolic coenzyme, is decreased in models of DC. Herein, using telomerase reverse transcriptase null (Tert-/-) mice with critically short telomeres, we investigated the effect of NAD supplementation with the NAD precursor, nicotinamide riboside (NR), on features of health span disrupted by telomere impairment. Our results revealed that NR ameliorated body weight loss in Tert-/- mice and improved telomere integrity and telomere dysfunction-induced systemic inflammation. NR supplementation also mitigated myeloid skewing of Tert-/- hematopoietic stem cells. Furthermore, NR alleviated villous atrophy and inflammation in the small intestine of Tert-/- transplant recipient mice. Altogether, our findings support NAD intervention as a potential therapeutic strategy to enhance aspects of health span compromised by telomere attrition.


Assuntos
Disceratose Congênita , Transplante de Células-Tronco Hematopoéticas , Humanos , Animais , Camundongos , NAD , Telômero/metabolismo , Disceratose Congênita/genética , Disceratose Congênita/metabolismo , Inflamação
14.
Aging Cell ; 22(12): e14017, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37888486

RESUMO

As aging and tumorigenesis are tightly interconnected biological processes, targeting their common underlying driving pathways may induce dual-purpose anti-aging and anti-cancer effects. Our transcriptomic analyses of 16,740 healthy samples demonstrated tissue-specific age-associated gene expression, with most tumor suppressor genes downregulated during aging. Furthermore, a large-scale pan-cancer analysis of 11 solid tumor types (11,303 cases and 4431 control samples) revealed that many cellular processes, such as protein localization, DNA replication, DNA repair, cell cycle, and RNA metabolism, were upregulated in cancer but downregulated in healthy aging tissues, whereas pathways regulating cellular senescence were upregulated in both aging and cancer. Common cancer targets were identified by the AI-driven target discovery platform-PandaOmics. Age-associated cancer targets were selected and further classified into four groups based on their reported roles in lifespan. Among the 51 identified age-associated cancer targets with anti-aging experimental evidence, 22 were proposed as dual-purpose targets for anti-aging and anti-cancer treatment with the same therapeutic direction. Among age-associated cancer targets without known lifespan-regulating activity, 23 genes were selected based on predicted dual-purpose properties. Knockdown of histone demethylase KDM1A, one of these unexplored candidates, significantly extended lifespan in Caenorhabditis elegans. Given KDM1A's anti-cancer activities reported in both preclinical and clinical studies, our findings propose KDM1A as a promising dual-purpose target. This is the first study utilizing an innovative AI-driven approach to identify dual-purpose target candidates for anti-aging and anti-cancer treatment, supporting the value of AI-assisted target identification for drug discovery.


Assuntos
Proteínas de Caenorhabditis elegans , Neoplasias , Animais , Humanos , Envelhecimento/genética , Longevidade/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Inteligência Artificial , Histona Desmetilases/metabolismo
15.
J Clin Invest ; 133(2)2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36409557

RESUMO

BACKGROUNDThe kynurenine pathway (KP) has been identified as a potential mediator linking acute illness to cognitive dysfunction by generating neuroactive metabolites in response to inflammation. Delirium (acute confusion) is a common complication of acute illness and is associated with increased risk of dementia and mortality. However, the molecular mechanisms underlying delirium, particularly in relation to the KP, remain elusive.METHODSWe undertook a multicenter observational study with 586 hospitalized patients (248 with delirium) and investigated associations between delirium and KP metabolites measured in cerebrospinal fluid (CSF) and serum by targeted metabolomics. We also explored associations between KP metabolites and markers of neuronal damage and 1-year mortality.RESULTSIn delirium, we found concentrations of the neurotoxic metabolite quinolinic acid in CSF (CSF-QA) (OR 2.26 [1.78, 2.87], P < 0.001) to be increased and also found increases in several other KP metabolites in serum and CSF. In addition, CSF-QA was associated with the neuronal damage marker neurofilament light chain (NfL) (ß 0.43, P < 0.001) and was a strong predictor of 1-year mortality (HR 4.35 [2.93, 6.45] for CSF-QA ≥ 100 nmol/L, P < 0.001). The associations between CSF-QA and delirium, neuronal damage, and mortality remained highly significant following adjustment for confounders and multiple comparisons.CONCLUSIONOur data identified how systemic inflammation, neurotoxicity, and delirium are strongly linked via the KP and should inform future delirium prevention and treatment clinical trials that target enzymes of the KP.FUNDINGNorwegian Health Association and South-Eastern Norway Regional Health Authorities.


Assuntos
Delírio , Fraturas do Quadril , Humanos , Ácido Quinolínico/líquido cefalorraquidiano , Doença Aguda , Fraturas do Quadril/líquido cefalorraquidiano , Fraturas do Quadril/complicações , Fraturas do Quadril/psicologia , Cinurenina/metabolismo , Delírio/etiologia , Delírio/líquido cefalorraquidiano , Inflamação/complicações
16.
Prog Neurobiol ; 231: 102530, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37739206

RESUMO

Different dopaminergic (DA) neuronal subgroups exhibit distinct vulnerability to stress, while the underlying mechanisms are elusive. Here we report that the transient receptor potential melastatin 2 (TRPM2) channel is preferentially expressed in vulnerable DA neuronal subgroups, which correlates positively with aging in Parkinson's Disease (PD) patients. Overexpression of human TRPM2 in the DA neurons of C. elegans resulted in selective death of ADE but not CEP neurons in aged worms. Mechanistically, TRPM2 activation mediates FZO-1/CED-9-dependent mitochondrial hyperfusion and mitochondrial permeability transition (MPT), leading to ADE death. In mice, TRPM2 knockout reduced vulnerable substantia nigra pars compacta (SNc) DA neuronal death induced by stress. Moreover, the TRPM2-mediated vulnerable DA neuronal death pathway is conserved from C. elegans to toxin-treated mice model and PD patient iPSC-derived DA neurons. The vulnerable SNc DA neuronal loss is the major symptom and cause of PD, and therefore the TRPM2-mediated pathway serves as a promising therapeutic target against PD.


Assuntos
Proteínas de Caenorhabditis elegans , Doença de Parkinson , Canais de Cátion TRPM , Humanos , Camundongos , Animais , Idoso , Cálcio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Canais de Cátion TRPM/metabolismo , Caenorhabditis elegans/metabolismo , Neurônios Dopaminérgicos/metabolismo , Doença de Parkinson/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo
17.
Brain Plast ; 8(2): 169-172, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36721391

RESUMO

 This is a summary of the 2022 Nansen Neuroscience Lectures. On 10 October 2022, Professors Henriette van Praag and David Gems gave the 2022 Nansen Neuroscience Lectures on the theme "Is ageing inevitable?" in the Norwegian Academy of Science and Letters, Oslo, Norway. While van Praag gave a lecture entitled "The benefits of exercise for brain function", Gems gave the 2nd lecture discussing "What causes ageing? Lessons from The Worm". Understanding the fundamental mechanisms of ageing will pave the way to the development of future interventions to pre-empt the development of the diseases, including Alzheimer's disease and other dementias, of later life.

18.
Mol Neurobiol ; 59(9): 5612-5629, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35739408

RESUMO

Alzheimer's disease (AD) is a common and devastating disease characterized by pathological aggregations of beta-amyloid (Aß) plaques extracellularly, and Tau tangles intracellularly. While our understandings of the aetiologies of AD have greatly expanded over the decades, there is no drug available to stop disease progression. Here, we demonstrate the potential of Passiflora edulis (P. edulis) pericarp extract in protecting against Aß-mediated neurotoxicity in mammalian cells and Caenorhabditis elegans (C. elegans) models of AD. We show P. edulis pericarp protects against memory deficit and neuronal loss, and promotes longevity in the Aß model of AD via stimulation of mitophagy, a selective cellular clearance of damaged and dysfunctional mitochondria. P. edulis pericarp also restores memory and increases neuronal resilience in a C. elegans Tau model of AD. While defective mitophagy-induced accumulation of damaged mitochondria contributes to AD progression, P. edulis pericarp improves mitochondrial quality and homeostasis through BNIP3/DCT1-dependent mitophagy and SOD-3-dependent mitochondrial resilience, both via increased nuclear translocation of the upstream transcriptional regulator FOXO3/DAF-16. Further studies to identify active molecules in P. edulis pericarp that could maintain neuronal mitochondrial homeostasis may enable the development of potential drug candidates for AD.


Assuntos
Doença de Alzheimer , Proteínas de Caenorhabditis elegans , Passiflora , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteína Forkhead Box O3/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Homeostase , Humanos , Mamíferos/metabolismo , Mitocôndrias/metabolismo , Passiflora/metabolismo
19.
Autophagy ; 18(4): 939-941, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35130128

RESUMO

Failed recognition and clearance of damaged mitochondria contributes to memory loss as well as Aß and MAPT/Tau pathologies in Alzheimer disease (AD), for which there is an unmet therapeutic need. Restoring mitophagy to eliminate damaged mitochondria could abrogate metabolic dysfunction, neurodegeneration and may subsequently inhibit or slow down cognitive decline in AD models. We have developed a high-throughput machine-learning approach combined with a cross-species screening platform to discover novel mitophagy-inducing compounds from a natural product library and further experimentally validated the potential candidates. Two lead compounds, kaempferol and rhapontigenin, induce neuronal mitophagy and reduce Aß and MAPT/Tau pathologies in a PINK1-dependent manner in both C. elegans and mouse models of AD. Our combinational approach provides a fast, cost-effective, and highly accurate method for identification of potent mitophagy inducers to maintain brain health.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Autofagia , Caenorhabditis elegans/metabolismo , Aprendizado de Máquina , Camundongos , Mitofagia/fisiologia
20.
Aging Brain ; 2: 100056, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36908880

RESUMO

Alzheimer's disease (AD) is one of the most persistent and devastating neurodegenerative disorders of old age, and is characterized clinically by an insidious onset and a gradual, progressive deterioration of cognitive abilities, ranging from loss of memory to impairment of judgement and reasoning. Despite years of research, an effective cure is still not available. Autophagy is the cellular 'garbage' clearance system which plays fundamental roles in neurogenesis, neuronal development and activity, and brain health, including memory and learning. A selective sub-type of autophagy is mitophagy which recognizes and degrades damaged or superfluous mitochondria to maintain a healthy and necessary cellular mitochondrial pool. However, emerging evidence from animal models and human samples suggests an age-dependent reduction of autophagy and mitophagy, which are also compromised in AD. Upregulation of autophagy/mitophagy slows down memory loss and ameliorates clinical features in animal models of AD. In this review, we give an overview of autophagy and mitophagy and their link to the progression of AD. We also summarize approaches to upregulate autophagy/mitophagy. We hypothesize that age-dependent compromised autophagy/mitophagy is a cause of brain ageing and a risk factor for AD, while restoration of autophagy/mitophagy to more youthful levels could return the brain to health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA