Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Infect Immun ; 92(4): e0000124, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38415639

RESUMO

Attaching/effacing (A/E) pathogens induce DNA damage and colorectal cancer by injecting effector proteins into host cells via the type III secretion system (T3SS). EspF is one of the T3SS-dependent effector proteins exclusive to A/E pathogens, which include enterohemorrhagic Escherichia coli. The role of EspF in the induction of double-strand breaks (DSBs) and the phosphorylation of the repair protein SMC1 has been demonstrated previously. However, the process of damage accumulation and DSB formation has remained enigmatic, and the damage response is not well understood. Here, we first showed a compensatory increase in the mismatch repair proteins MutS homolog 2 (MSH2) and MSH6, as well as poly(ADP-ribose) polymerase 1, followed by a dramatic decrease, threatening cell survival in the presence of EspF. Flow cytometry revealed that EspF arrested the cell cycle at the G2/M phase to facilitate DNA repair. Subsequently, 8-oxoguanine (8-oxoG) lesions, a marker of oxidative damage, were assayed by ELISA and immunofluorescence, which revealed the accumulation of 8-oxoG from the cytosol to the nucleus. Furthermore, the status of single-stranded DNA (ssDNA) and DSBs was confirmed. We observed that EspF accelerated the course of DNA lesions, including 8-oxoG and unrepaired ssDNA, which were converted into DSBs; this was accompanied by the phosphorylation of replication protein A 32 in repair-defective cells. Collectively, these findings reveal that EspF triggers various types of oxidative DNA lesions with impairment of the DNA damage response and may result in genomic instability and cell death, offering novel insight into the tumorigenic potential of EspF.IMPORTANCEOxidative DNA lesions play causative roles in colitis-associated colon cancer. Accumulating evidence shows strong links between attaching/effacing (A/E) pathogens and colorectal cancer (CRC). EspF is one of many effector proteins exclusive to A/E pathogens with defined roles in the induction of oxidative stress, double-strand breaks (DSBs), and repair dysregulation. Here, we found that EspF promotes reactive oxygen species generation and 8-oxoguanine (8-oxoG) lesions when the repair system is activated, contributing to sustained cell survival. However, infected cells exposed to EspF presented 8-oxoG, which results in DSBs and ssDNA accumulation when the cell cycle is arrested at the G2/M phase and the repair system is defective or saturated by DNA lesions. In addition, we found that EspF could intensify the accumulation of nuclear DNA lesions through oxidative and replication stress. Overall, our work highlights the involvement of EspF in DNA lesions and DNA damage response, providing a novel avenue by which A/E pathogens may contribute to CRC.


Assuntos
Neoplasias Colorretais , Escherichia coli Êntero-Hemorrágica , Humanos , Células Epiteliais , Reparo do DNA , Dano ao DNA , Estresse Oxidativo
2.
Cancer Sci ; 115(8): 2729-2737, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38806289

RESUMO

Because of the common physical condition, reduced organ function, and comorbidities, elderly patients with nasopharyngeal carcinoma (NPC) are often underrepresented in clinical trials. The optimal treatment of elderly patients with locally advanced NPC remains unclear. The purpose of this study was to evaluate the efficacy of concurrent nimotuzumab combined with intensity-modulated radiotherapy (IMRT) in elderly patients with locally advanced NPC. We conducted a single-arm, phase II trial for elderly patients with stage III-IVA NPC (according to UICC-American Joint Committee on Cancer TNM classification, 8th edition). All patients received concurrent nimotuzumab (200 mg/week, 1 week prior to IMRT) combined with IMRT. The primary end-point was complete response (CR) rate. The secondary end-points were survival, safety, and geriatric assessment. Between March 13, 2017 and November 12, 2018, 30 patients were enrolled. In total, 20 (66.7%) patients achieved CR, and objective response was observed in 30 (100.0%) patients 1 month after radiotherapy. The median follow-up time was 56.05 months (25th-75th percentile, 53.45-64.56 months). The 5-year locoregional relapse-free survival, distant metastasis-free survival, cancer-specific survival, disease-free survival, and overall survival were 89.4%, 86.4%, 85.9%, 76.5%, and 78.8%, respectively. Grade 3 mucositis occurred in 10 (33%) patients and grade 3 pneumonia in 3 (10%) patients. Concurrent nimotuzumab combined with IMRT is effective and well-tolerated for elderly patients with locally advanced NPC.


Assuntos
Anticorpos Monoclonais Humanizados , Quimiorradioterapia , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Radioterapia de Intensidade Modulada , Humanos , Radioterapia de Intensidade Modulada/métodos , Radioterapia de Intensidade Modulada/efeitos adversos , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/administração & dosagem , Masculino , Feminino , Idoso , Carcinoma Nasofaríngeo/radioterapia , Carcinoma Nasofaríngeo/patologia , Carcinoma Nasofaríngeo/mortalidade , Carcinoma Nasofaríngeo/tratamento farmacológico , Carcinoma Nasofaríngeo/terapia , Neoplasias Nasofaríngeas/radioterapia , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/mortalidade , Neoplasias Nasofaríngeas/terapia , Neoplasias Nasofaríngeas/tratamento farmacológico , Quimiorradioterapia/métodos , Estadiamento de Neoplasias , Idoso de 80 Anos ou mais , Resultado do Tratamento , Antineoplásicos Imunológicos/uso terapêutico , Antineoplásicos Imunológicos/administração & dosagem
3.
BMC Microbiol ; 24(1): 75, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454365

RESUMO

BACKGROUND: The mycotoxin zearalenone (ZEA) produced by toxigenic fungi is widely present in cereals and its downstream products. The danger of ZEA linked to various human health issues has attracted increasing attention. Thus, powerful ZEA-degrading or detoxifying strategies are urgently needed. Biology-based detoxification methods are specific, efficient, and environmentally friendly and do not lead to negative effects during cereal decontamination. Among these, ZEA detoxification using degrading enzymes was documented to be a promising strategy in broad research. Here, two efficient ZEA-degrading lactonases from the genus Gliocladium, ZHDR52 and ZHDP83, were identified for the first time. This work studied the degradation capacity and properties of ZEA using purified recombinant ZHDR52 and ZHDP83. RESULTS: According to the ZEA degradation study, transformed Escherichia coli BL21(DE3) PLySs cells harboring the zhdr52 or zhdp83 gene could transform 20 µg/mL ZEA within 2 h and degrade > 90% of ZEA toxic derivatives, α/ß-zearalanol and α/ß-zearalenol, within 6 h. Biochemical analysis demonstrated that the optimal pH was 9.0 for ZHDR52 and ZHDP83, and the optimum temperature was 45 °C. The purified recombinant ZHDR52 and ZHDP83 retained > 90% activity over a wide range of pH values and temperatures (pH 7.0-10.0 and 35-50 °C). In addition, the specific activities of purified ZHDR52 and ZHDP83 against ZEA were 196.11 and 229.64 U/mg, respectively. The results of these two novel lactonases suggested that, compared with ZHD101, these two novel lactonases transformed ZEA into different products. The slight position variations in E126 and H242 in ZDHR52/ZEA and ZHDP83/ZEA obtained via structural modelling may explain the difference in degradation products. Moreover, the MCF-7 cell proliferation assay indicated that the products of ZEA degradation using ZHDR52 and ZHDP83 did not exhibit estrogenic activity. CONCLUSIONS: ZHDR52 and ZHDP83 are alkali ZEA-degrading enzymes that can efficiently and irreversibly degrade ZEA into non-estrogenic products, indicating that they are potential candidates for commercial application. This study identified two excellent lactonases for industrial ZEA detoxification.


Assuntos
Gliocladium , Zearalenona , Zeranol/análogos & derivados , Humanos , Zearalenona/química , Gliocladium/metabolismo , Biotransformação
4.
J Magn Reson Imaging ; 59(3): 922-928, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37256732

RESUMO

BACKGROUND: Compared with the conventional work-up (CWU) including computed tomography (CT) of the chest and abdomen, MRI of the head and neck, and skeletal scintigraphy, positron emission tomography (PET)/MRI might improve diagnostic accuracy, shorten the work-up time, and reduce false-positive (FP) findings in patients with nasopharyngeal carcinoma (NPC). However, evidence of cost-effectiveness is needed for the adoption of PET/MRI for the initial staging in NPC. PURPOSE: To evaluate the cost-effectiveness and clinical value of PET/MRI as an initial staging procedure for NPC. STUDY TYPE: Retrospective cohort cost effectiveness study. SUBJECTS: Three hundred forty-three patients with a median age of 51 (13-81) years underwent PET/MRI before treatment (the PET/MRI group) and the remaining 677 patients with a median age of 55 (15-95) years only underwent CWU (the CWU group). There were 80 (23.3%) females and 193 (28.5%) females in the PET/MRI and CWU groups, respectively. FIELD STRENGTH/SEQUENCE: 3-T integrated PET/MRI system, diffusion-weighted echo-planar imaging (b = 0 and 1000 s/mm2 ) and [18F] fluorodeoxyglucose PET. ASSESSMENT: The primary end point was the FP rate. Costs were determined as issued in 2021 by the Medical Insurance Administration Bureau of Zhejiang, China. STATISTICAL TESTS: Incremental cost effectiveness ratio (ICER) measured cost of using PET/MRI per percent of patients who avoided a FP. A P-value <0.05 was considered statistically significant. RESULTS: For the whole group, the de novo metastatic disease rate was 5.2% (53/1020). A total of 187 patients with FP results were observed. Significantly more patients with FP results were observed in the CWU group compared to the PET/MRI group (25.6% vs. 4.1%). The ICER was $54 for each percent of patients avoiding a FP finding. DATA CONCLUSION: Compared with CWU, PET/MRI may reduce the FP risk. Furthermore, PET/MRI may be cost-effective as an initial staging procedure for NPC. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 6.


Assuntos
Fluordesoxiglucose F18 , Neoplasias Nasofaríngeas , Feminino , Humanos , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Masculino , Carcinoma Nasofaríngeo , Estudos Retrospectivos , Compostos Radiofarmacêuticos , Estadiamento de Neoplasias , Tomografia por Emissão de Pósitrons/métodos , Imageamento por Ressonância Magnética , Neoplasias Nasofaríngeas/patologia
5.
Headache ; 64(3): 285-298, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38429985

RESUMO

BACKGROUND AND OBJECTIVE: Hemodialysis headache (HDH) is a common complication of dialysis that negatively affects the patient's quality of life. The etiology and triggering factors of HDH are not fully understood. This study aims to assess the prevalence and characteristics of HDH among patients undergoing hemodialysis across multiple centers in China. Furthermore, we conducted a case-control study at one hospital to identify risk factors associated with HDH. METHODS: The study consisted of two phases including a cross-sectional observational study and a case-control study. Participants underwent neurological examinations and interviews. Demographic and medical information were collected from both medical records and patient files. Serum creatinine, uric acid, urea, estimated glomerular filtration rate (eGFR), plasma osmolarity, glucose, C1q, and a variety of electrolytes including potassium, sodium, chloride, calcium, magnesium, and phosphorus were measured before and after dialysis. Blood pressure variables including systolic blood pressure, diastolic blood pressure, pulse pressure (PP), and heart rate were monitored hourly. Serum levels of inflammatory factors, including tumor necrosis factor α (TNF-α), interleukin (IL)-1ß, IL-4, IL-6, and IL-10 were quantified using a double-antibody sandwich enzyme-linked immunosorbent assay (ELISA). RESULTS: The prevalence of HDH was 37.7% (183/485). HDH was characterized by a bilateral tightening headache of moderate intensity and duration of <2 h, occurring in different locations. The case-control study included 50 patients with HDH and 84 control patients, pre-dialysis PP was found to be lower in the HDH group than in the control group (mean ± standard deviation 51.5 ± 18.2 vs. 67.9 ± 14.9, p = 0.027). Furthermore, the pre-dialysis serum complement C1q level was significantly higher for the HDH group than the control group (median and interquartile range 201.5 [179.0-231.5] vs. 189.0 [168.9-209.0], p = 0.021). Pre-dialysis PP was associated with 5.1% decreased odds of HDH (odds ratio [OR] = 0.96; 95% confidence interval [CI], 0.93-0.99, p = 0.026), body weight was associated with a 5.4% decreased risk of HDH (OR = 0.95; 95% CI, 0.91-0.99, p = 0.013), and pre-dialysis C1q levels increased the odds of HDH by 1.9% (OR = 1.02; 95% CI, 1.01-1.03, p = 0.005). CONCLUSION: Low PP, low body weight, and high blood complement C1q may be potential risk factors associated with HDH.


Assuntos
Complemento C1q , Qualidade de Vida , Humanos , Pressão Sanguínea , Estudos de Casos e Controles , Estudos Transversais , Fatores de Risco , Cefaleia/etiologia , Diálise Renal/efeitos adversos , Peso Corporal
6.
Carcinogenesis ; 44(3): 221-231, 2023 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-36847693

RESUMO

Cervical cancer (CC) remains one of the most common female malignancies, with higher incidence and mortality rates. more than 99% of CCs are associated with persistent infection with high-risk human papillomavirus. In view of the growing evidence that HPV 16 E6 and E7, two key oncoproteins encoded by HPV 16, regulate the expression of many other multifunctional genes and downstream effectors that contribute to the development of CC. Herein, we undertook a comprehensive effort into how HPV16 E6, E7 oncogenes affect the progression of CC cells. Previous studies have shown that ICAT expression was significantly increased in CC and had a pro-cancer effect. We observed that knockdown of HPV16 E6, E7 expression in SiHa and CasKi cells resulted in significant inhibition of ICAT expression and upregulation of miR-23b-3p expression. Besides, dual luciferase assays confirmed that ICAT was a target gene of miR-23b-3p, and negatively modulated by miR-23b-3p. Functional experiments showed that the overexpression of miR-23b-3p suppressed malignant behaviors of CC cells, such as migration, invasion and EMT. The overexpression of ICAT counteracted the suppressive effect of miR-23b-3p on HPV16-positive CC cells. Furthermore, after the knockdown of HPV16 E6 and E7, the inhibition of miR-23b-3p could increase the ICAT expression and rescue the siRNA HPV16 E6, E7-mediated suppressive impact on the aggressiveness of SiHa and CaSki cells. Collectively, our findings uncover that HPV16 E6, E7/miR-23b-3p/ ICAT axis plays an important role in HPV16-positive CC pathogenesis, which may serve as a promising therapeutic target for HPV16-associated CC.


Assuntos
MicroRNAs , Proteínas Oncogênicas Virais , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/patologia , Papillomavirus Humano 16/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Proliferação de Células/genética , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo
7.
Small ; 19(5): e2204310, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36464658

RESUMO

Silica nanoparticles (SiNPs) are one of the most common inorganic nanomaterials. Autophagy is the predominant biological response to nanoparticles and transcription factor EB (TFEB) is a master regulator of the autophagy-lysosome pathway. Previous studies show that SiNPs induce autophagosome accumulation, yet the precise underlying mechanisms remain uncertain. The present study investigates the role of TFEB during SiNP-induced autophagy. SiNP-induced TFEB nuclear translocation is verified using immunofluorescence and western blot assay. The regulation of TFEB is proved to be via EIF2AK3 pathway. A TFEB knockout (KO) cell line is constructed to validate the TFEB involvement in SiNP-induced autophagy. The transcriptomes of wild-type and TFEB KO cells are compared using RNA-sequencing to identify genes of the TFEB-mediated autophagy and lysosome pathways affected by SiNPs. Based on these data and the Human Autophagy Database, four candidate autophagic genes are identified, including HSPB8, ATG4D, CTSB and CTSD. Specifically, that the chaperone HSPB8 is upregulated through SiNP-mediated TFEB activation and forms a chaperone-assisted selective autophagy (CASA) complex with BAG3 and HSC70, triggering HSPB8-assisted selective autophagy, is found. Thus, this study characterizes a novel mechanism underlying SiNP-induced autophagy that helps pave the way for further research on the toxicity and risk assessment of SiNPs.


Assuntos
Nanopartículas , Dióxido de Silício , Humanos , Autofagia , Hepatócitos/metabolismo , Autofagossomos/metabolismo , Chaperonas Moleculares , Lisossomos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo
8.
Analyst ; 148(20): 5233-5242, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37725068

RESUMO

Patulin (PAT) is a kind of mycotoxin which must be monitored for the sake of quality and safety in traditional Chinese medicine (TCM) owing to its harm to human health. On this account, a rationally designed ratiometric fluorescent aptasensor was developed based on the studies of the interaction mechanism between PAT and its aptamer (PAT-APT). First, CD spectroscopy, molecular docking, and molecular dynamic simulation were applied to investigate the details on how PAT-APT binds with its target molecule. The results indicated that the structure of PAT-APT changed to a certain extent and was stabilized after binding with PAT. C-11, C-37 and C-38 were the key sites for the recognition and interaction between PAT-APT and its target. Second, based on these results, a ratiometric aptasensor was designed using fluorescence resonance energy transfer (FRET) and synchronous fluorescence spectroscopy. A complementary sequence (cDNA) to the aptamer with an appropriate length and hybridization position was obtained through rational design and optimization. Both PAT-APT and cDNA were labeled using a pair of fluorophores, which could generate FRET when the two single-stranded oligonucleotides hybridized. The accurate detection of PAT could be realized according to the change ratio of the fluorescence intensity at the corresponding wavelengths of the two fluorophores before and after the assay. The aptasensor achieved an ultralow limit of detection of 0.16 nM, perfect selectivity, and satisfactory practicability in complex TCM samples. To our knowledge, this is the first aptasensor for PAT designed through the interaction mechanism between its aptamer and the target molecule. Moreover, the assay for PAT is cost-effective, does not need complicated pretreatment and only takes less than an hour. In summary, this study makes a contribution to the safety control of TCM and provides a thinking mode from mechanism to rational design to conquer the problem of sensitive aptasensing of one component in a complex system.

9.
Biochem Biophys Res Commun ; 594: 117-123, 2022 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-35081500

RESUMO

BACKGROUND: Research on the role of lncRNAs in the process of bone metastasis in breast cancer (BM-BCa) has just begun at an early stage, and an increasing number of lncRNAs have been proved to play a regulatory role in the process of BM-BCa. Our study focused on the balance of osteogenic-osteoclast regulated by lncRNA-SNHG3 in bone metastasis microenvironment. METHODS: SNHG3 level of clinical tissues and breast cancer cell lines was determined by RT-qPCR. ALP staining, ALP activity identification and western blotting of OPG, OSX, RUNX2, BMP2 together with BMP3 was performed to verify the osteogenesis of bone marrow mesenchymal stem cells (BMSCs) both in vitro and in vivo. Exosomes derived from MDA-MB-231 were characterized and sequenced, followed by RT-qPCR. Dual luciferase reporter gene assay was utilized to analyze the binding sites of miR-1273g-3p on SNHG3 and BMP3. RESULTS: Expression of BMP3 was positively regulated by SNHG3 via exosomal miR-1273g-3p. CONCLUSION: The overexpression of SNHG3 in breast cancer cells may be responsible for osteolytic metastasis Thus, knockdown of SNHG3 might be a potential target for improvement of BM-BCa Treatment.


Assuntos
Proteína Morfogenética Óssea 3/genética , Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , RNA Longo não Codificante/metabolismo , Regiões 3' não Traduzidas , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Neoplasias da Mama/patologia , Diferenciação Celular , Exossomos , Feminino , Humanos , Células MCF-7 , Metástase Neoplásica , Osteogênese , Microambiente Tumoral
10.
Environ Res ; 205: 112454, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34856163

RESUMO

It's of practical importance but highly challenging for cell immobilization supports to maintain mechanical strength and reduce microbial leakage in environmental and industrial applications. Herein, we developed an agar/κ-carrageenan composite hydrogel to entrap Klebsiella pneumoniae with the combination of nano-Fe3O4 for processing phenol wastes. The agar/carrageenan-K. pneumoniae composite bead showed good pelletizing properties, superior material strength and high cell loading. Introduction of nano-Fe3O4 to the composite gel further enhanced phenol degradation rate by >10% owing to strengthened phenol oxidation by Fe3O4-induced hydroxyl radicals (·OH) and improved mass and electron transfers. 50 successive cycles of degradation and recycling using the agar/carrageenan-K. pneumoniae composite bead showed that 1500 mg/L phenol was fully degraded for all cycles with the highest rate of 55.12 mg L-1·h-1 obtained at the 15th cycles. The improved stability and recyclability render the as-prepared immobilized phenol-degrading bacteria with great potential for industrial applications.


Assuntos
Klebsiella pneumoniae , Fenol , Ágar , Carragenina , Klebsiella pneumoniae/metabolismo , Fenol/metabolismo , Fenóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA