RESUMO
Gut bacteria are closely associated with the development of atopic dermatitis (AD) due to their immunoregulatory function. Indole derivatives, produced by gut bacteria metabolizing tryptophan, are ligands to activate the aryl hydrocarbon receptor (AHR), which plays a critical role in attenuating AD symptoms. Limosilactobacillus reuteri, a producer of indole derivatives, regulates mucosal immunity via activating the AHR signaling pathway. However, the effective substance and mechanism of L. reuteri in the amelioration of AD remain to be elucidated. In this research, we found that L. reuteri DYNDL22M62 significantly improved AD-like symptoms in mice by suppressing IgE levels and the expressions of thymic stromal lymphopoietin (TSLP), IL-4, and IL-5. L. reuteri DYNDL22M62 induced an increase in the production of indole lactic acid (ILA) and indole propionic acid (IPA) via targeted tryptophan metabolic analysis and the expression of AHR in mice. Furthermore, L. reuteri DYNDL22M62 increased the proportions of Romboutsia and Ruminococcaceae NK4A214 group, which were positively related to ILA, but decreased Dubosiella, which was negatively related to IPA. Collectively, L. reuteri DYNDL22M62 with the role of modulating gut bacteria and the production of indole derivatives may attenuate AD via activating AHR in mice.
Assuntos
Dermatite Atópica , Limosilactobacillus reuteri , Animais , Bactérias/metabolismo , Dermatite Atópica/metabolismo , Indóis/metabolismo , Indóis/farmacologia , Limosilactobacillus reuteri/metabolismo , Camundongos , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Triptofano/metabolismoRESUMO
Bifidobacterium bifidum strains, an important component of probiotic foods, can form biofilms on abiotic surfaces, leading to increased self-resistance. However, little is known about the molecular mechanism of B. bifidum biofilm formation. A time series transcriptome sequencing and untargeted metabolomics analysis of both B. bifidum biofilm and planktonic cells was performed to identify key genes and metabolites involved in biofilm formation. Two hundred thirty-five nonredundant differentially expressed genes (DEGs) (including vanY, pstS, degP, groS, infC, groL, yajC, tadB and sigA) and 219 nonredundant differentially expressed metabolites (including L-threonine, L-cystine, L-tyrosine, ascorbic acid, niacinamide, butyric acid and sphinganine) were identified. Thirteen pathways were identified during the integration of both transcriptomics and metabolomics data, including ABC transporters; quorum sensing; two-component system; oxidative phosphorylation; cysteine and methionine metabolism; glutathione metabolism; glycine, serine and threonine metabolism; and valine, leucine and isoleucine biosynthesis. The DEGs that relate to the integration pathways included asd, atpB, degP, folC, ilvE, metC, pheA, pstS, pyrE, serB, ulaE, yajC and zwf. The differentially accumulated metabolites included L-cystine, L-serine, L-threonine, L-tyrosine, methylmalonate, monodehydroascorbate, nicotinamide, orthophosphate, spermine and tocopherol. These results indicate that quorum sensing, two-component system and amino acid metabolism are essential during B. bifidum biofilm formation.
Assuntos
Proteínas de Bactérias/metabolismo , Bifidobacterium bifidum/fisiologia , Biofilmes/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Bifidobacterium bifidum/genética , Bifidobacterium bifidum/metabolismo , Perfilação da Expressão Gênica , Metaboloma , Percepção de Quorum , Transcriptoma , Triticum/microbiologiaRESUMO
PURPOSE: Many studies have investigated the association between intestinal barrier impairment and the onset of atopic dermatitis (AD). The gut microbiota is essential to maintain physiological homeostasis and immune regulation of host. Therefore, the objectives were to determine the effects of probiotics on the clinical symptoms, immune responses, and gut microbiota in AD patients. METHODS: 109 patients were randomly divided into 4 groups, including placebo group, oligosaccharides group, Bifidobacterium bifidum CCFM16 group, and Lactobacillus plantarum CCFM8610 group. At the end of the experiment, serological indicators, SCORAD, and DLQI indices were assessed. V3-V4 region of the 16S ribosomal RNA gene was sequenced to evaluate changes in the gut microbiota. Linear discriminant analysis (LDA) effect size was used to uncover microbial biomarkers and PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) was used to predict gene family abundances based on 16S information. RESULTS: The results demonstrated that CCFM8610 significantly decreased the SCORAD index, and increased the serum IL-10 levels. Supplement with CCFM8610 and CCFM16 significantly influenced the alpha diversity, increased the proportion of Bacteroidetes, and reduced the F/B ratio. CCFM8610 treatment downregulated the functional genes of gut microbiota involving Staphylococcus aureus infection and upregulated the steroid hormone biosynthesis. CONCLUSION: The results indicated a positive correlation between decreased SCORAD index and CCFM8610 treatment, and that CCFM8610 regulated the immune responses in AD patients. CCFM8610 treatment influences the gut microbiota composition and functional changes. In conclusion, L. plantarum CCFM8610 exerts the strain-specific amelioration effects on patients with AD. TRIAL REGISTRATION: ChiCTR1800015330 (Clinicaltrials.gov Identifier).
Assuntos
Dermatite Atópica , Microbioma Gastrointestinal , Probióticos , Humanos , Imunidade , Filogenia , Projetos PilotoRESUMO
PURPOSE: Emerging studies have reported gut microbial composition plays a key role in alleviating AD clinical symptoms during the probiotic intervention, but the correlation among clinical symptoms, immune responses and gut microbial alteration needs to be explored. Therefore, the objective was to investigate the correlation during Bifidobacterium adolescentis intervention in DNFB-induced AD mice. METHODS: The mice were randomly divided into nine groups and fed B. adolescentis for 3 weeks. At the end of the experiment, clinical and immune indicators were assessed. Flow cytometry was performed to explore the effect of B. adolescentis on regulatory T cells in the spleen. V3-V4 region of the 16S ribosomal RNA (rRNA) gene was sequenced to evaluate changes in the gut microbiota. RESULTS: Bifidobacteria adolescentis treatments reduced ear and skin thickness and suppressed eosinophils and mast cells infiltration. Th1- and Th2-type responses were regulated and the Tregs population was promoted in the spleen by B. adolescentis treatments. Bifidobacteria adolescentis increased the relative abundance of Lactobacillus but decrease Dorea and Pediococcus. Propionic and butyric acids were increased but isovaleric acid was decreased by B. adolescentis treatment. Besides, the functional modules, such as fatty acid biosynthesis, antigen processing and presentation were upregulated by B. adolescentis Ad1 treatment compared to the DNFB group. CONCLUSION: Collectively, these results imply that B. adolescentis with the role of immunomodulation promotes Treg differentiation and suppresses Th2 responses, and increases the proportion of Lactobacillus that is positively correlated to increase in propionic acid production, and thus has the potential for AD amelioration.
Assuntos
Bifidobacterium adolescentis , Dermatite Atópica , Microbioma Gastrointestinal , Animais , Dermatite Atópica/terapia , Dinitrofluorbenzeno , Modelos Animais de Doenças , Imunidade , CamundongosRESUMO
Epidemiological investigation confirmed that the intake of dietary fiber (DF) is closely related to human health, and the most important factor affecting the physiological function of DF, besides its physicochemical properties, is the gut microbiota. This paper mainly summarizes the interaction between DF and gut microbiota, including the influence of DF on the colonization of gut microbiota based on its different physicochemical properties, and the physiological role of gut microbiota in destroying the complex molecular structure of DF by encoding carbohydrate-active enzymes, thus producing small molecular products that affect the metabolism of the host. Taking cardiovascular disease (Atherosclerosis and hypertension), liver disease, and immune diseases as examples, it is confirmed that some DF, such as fructo-oligosaccharide, galactooligosaccharide, xylo-oligosaccharide, and inulin, have prebiotic-like physiological effects. These effects are dependent on the metabolites produced by the gut microbiota. Therefore, this paper further explores how DF affects the gut microbiota's production of substances such as short-chain fatty acids, bile acids, and tryptophan metabolites, and provides a preliminary explanation of the mechanisms associated with their impact on host health. Finally, based on the structural properties of DF and the large heterogeneity in the composition of the population gut microbiota, it may be a future trend to utilize DF and the gut microbiota to correlate host health for precision nutrition by combining the information from population disease databases.
Assuntos
Fibras na Dieta , Microbioma Gastrointestinal , Prebióticos , Fibras na Dieta/metabolismo , Microbioma Gastrointestinal/fisiologia , Humanos , Animais , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Ácidos Graxos Voláteis/metabolismo , Ácidos e Sais Biliares/metabolismoRESUMO
Microbiota-derived desaminotyrosine (DAT) protects the host from influenza by modulating the type I interferon (IFN) response. The aim of this study was to investigate the antivirus effects of a DAT-producing bacteria strain. A comparative genomics analysis and UHPLC Q-Exactive MS were used to search for potential strains and confirm their ability to produce DAT, respectively. The anti-influenza functions of the DAT producer were evaluated using an antibiotic-treated mouse model by orally administering the specific strain before viral infection. The results showed the Lactiplantibacillus pentosus CCFM1227 contained the phy gene and produced DAT by degrading phloretin. In vivo, L. pentosus CCFM1227 re-inoculation increased the DAT level in feces, and protected from influenza through inhibiting viral replication and alleviating lung immunopathology. Furthermore, CCFM1227-derived DAT was positively correlated with the IFN-ß level in the lung. The transcriptome results showed that CCFM1227 activated gene expression in the context of the defense response to the virus, and the response to interferon-beta. Moreover, CCFM1227 treatment upregulated the expression of MHC-I family genes, which regulate the adaptive immune response. In conclusion, L. pentosus CCFM1227 exerted antiviral effects by producing DAT in the gut, and this may provide a potential solution for creating effective antiviral probiotics.
Assuntos
Doenças Transmissíveis , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Interferon Tipo I , Infecções por Orthomyxoviridae , Animais , Camundongos , Humanos , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/prevenção & controle , Influenza Humana/prevenção & controle , AntiviraisRESUMO
Tryptophan is metabolized by microorganisms into various indole derivatives that have been proven to alleviate diseases and promote human health. Lactic acid bacteria (LAB) are a broad microbial concept, some of which have been developed as probiotics. However, the capacity of most LAB to metabolize tryptophan is unknown. In this study, the aim is to reveal the rule of tryptophan metabolism in LAB by multi-omics. The findings showed that LAB were rich in genes for tryptophan catabolism and that multiple genes were shared among LAB species. Although the number of their homologous sequences was different, they could still form the same metabolic enzyme system. The metabolomic analysis revealed that LAB were capable of producing a variety of metabolites. Strains belonging to the same species can produce the same metabolites and have similar yields. A few strains showed strain-specificity in the production of indole-3-lactic acid (ILA), indole-3-acetic acid, and 3-indolealdehyde (IAld). In the genotype-phenotype association analysis, the metabolites of LAB were found to be highly consistent with the outcomes of gene prediction, particularly ILA, indole-3-propionic acid, and indole-3-pyruvic acid. The overall prediction accuracy was more than 87% on average, which indicated the predictability of tryptophan metabolites of LAB. Additionally, genes influenced the concentration of metabolites. The levels of ILA and IAld were significantly correlated with the numbers of aromatic amino acid aminotransferase and amidase, respectively. The unique indolelactate dehydrogenase in Ligilactobacillus salivarius was the primary factor contributing to its large production of ILA. In summary, we demonstrated the gene distribution and production level of tryptophan metabolism in LAB and explored the correlation between genes and phenotypes. The predictability and specificity of the tryptophan metabolites in LAB were proven. These results provide a novel genomic method for the discovery of LAB with tryptophan metabolism potential and offer experimental data for probiotics that produce specific tryptophan metabolites.
Assuntos
Lactobacillales , Humanos , Lactobacillales/genética , Lactobacillales/metabolismo , Triptofano/metabolismo , Indóis/metabolismo , Metabolômica/métodos , GenômicaRESUMO
In this study, three different microencapsulation methods were used to embed Bifidobacterium to explore the alleviating effects of embedding methods on constipated mice. By measuring the defecation-related parameters, it was found that the Bifidobacteria treated by electrostatic spray drying had the best ability to relieved constipation. Furthermore, by detecting constipation-related gastrointestinal regulatory peptides, inflammatory factors, intestinal microbiota, and SCFAs, it was discovered that Bifidobacteria treated by electrostatic spray drying changed the composition of intestinal microbiota, especially the relative abundance of bacteria that were positively correlated with AQP3, but negatively correlated with ET-1 and SS, then increased the level of AQP3 in the intestine, and finally relieved constipation by increasing the fecal water content and small intestinal propulsion rate. In conclusion, the electrostatic spray drying method was superior to the other two methods in maintaining the activity of Bifidobacteria and relieved constipation by changing the relative abundance of bacteria that were correlated with gastrointestinal regulatory peptides and increasing the content of fecal water and small intestinal propulsion rate.
Assuntos
Bifidobacterium , Secagem por Atomização , Animais , Bactérias , Constipação Intestinal/terapia , Fezes/microbiologia , Camundongos , Peptídeos , Eletricidade Estática , ÁguaRESUMO
Faecalibacterium prausnitzii is prevalent in the human gut and is a potential candidate for next-generation probiotics (NGPs) or biotherapeutics. However, the biodiversity and physiological characteristics of Faecalibacterium prausnitzii remain unclear. This study isolated 26 novel F. prausnitzii strains from human feces using a combination of negative screening and prime-specific PCR amplification (NSPA). Based on a 16S rRNA gene analysis, F. prausnitzii strains can be classified into two main phylogroups (phylogroups I and II), which were further clustered into five subgroups (I-A, II-B, II-C, II-D, and II-E). The ultrastructure, colony morphology, growth performance, and short-chain fatty acids (SCFAs)-producing ability were found to be variable among these F. prausnitzii isolates. The optimal pH for the isolates growth ranged between 6.0 and 7.0, while most isolates were inhibited by 0.1% of bile salts. Antimicrobial resistance profiles showed that all F. prausnitzii isolates were susceptible to vancomycin, whereas >80% were kanamycin and gentamicin resistant. Additionally, all strains can utilize maltose, cellulose, and fructose but not xylose, sorbose, and 2'-FL. Overall, our work provides new insights into the biodiversity and physiological characteristics of F. prausnitzii, as well as the choices of strains suitable for NGPs.
RESUMO
Respiratory syncytial virus (RSV) infection is a constant threat to the health of young children, and this is mainly attributed to the lack of effective prevention strategies. This study aimed to determine whether Lactobacillus (L.) mucosae, a potential probiotic, could protect against respiratory viral infection in a mouse model. Naive 3-4-week-old BALB/c mice were orally administered with three L. mucosae strains (2.5 × 108 CFU/mouse) 7 days before RSV infection (105 TCID50/mouse). Results showed that all three strains inhibited RSV replication and reduced the proportions of inflammatory cells, including granulocytes and monocytes in the blood. The L. mucosae M104R01L3 treatment maintained stable weight in mice and increased interferon (IFN)-ß and tumor necrosis factor (TNF)-α levels. The L. mucosae DCC1HL5 treatment increased interleukin (IL)-1ß and IL-10 levels. Moreover, the M104R01L3 and DCC1HL5 strains increased the proportions of Akkermansia, Alistipes, and Anaeroplasma which contributed to the advantageous modulation of the gut microbiota. Besides, L. mucosae affected the gut levels of short-chain fatty acids (SCFAs) that are important for the antiviral response. L. mucosae 1,025 increased acetate, propionate, and butyrate levels, whereas L. mucosae M104R01L3 increased the level of acetate in the gut. L. mucosae M104R01L3 may protect against viral infection by upregulating the IFN-ß levels in the lungs and its antiviral effect may be related to the increase of acetate levels in the gut. In conclusion, the three L. mucosae strains exerted antiviral effects against RSV infection by differentially regulating immune responses and intestinal micro-ecological balance. This study can provide a reference for studying the mechanisms underlying the antiviral effects of L. mucosae.
RESUMO
The coexistence of allergic rhinitis (AR) and asthma reinforces the concept of "one airway, one disease," which has prompted the exploration for a single intervention to treat both diseases. Lactobacillus reuteri CCFM1040 (CCFM1040) was found to be an inhibitor of the common pathogenesis of AR and asthma in our previous studies. This study presented a randomized, placebo-controlled trial to investigate the clinical effects of CCFM1040 on both diseases. The total symptom score (TSS), the quality of life (QoL), and the modulation in the gut microbiota of patients with AR, the Asthma Control and Test (ACT) of patients with asthma, and the safety of both AR and asthma were measured. In patients with AR, CCFM1040 numerically decreased TSS, Rhinoconjunctivitis Quality of Life Questionnaire (RQLQ), 3 nasal scores in TSS (nasal congestion, watery eyes, and rhinorrhea), and sleep and significantly improved (P = 0.014) non-nose/eye symptoms. The ACT score was numerically increased in patients with asthma (from partially controlled to well-controlled). Significant microbial (from class level to genus level) and metabolic differences (P < 0.05) were found in patients with AR. No adverse reactions were observed. No effect on the blood and urine routine indexes. CCFM1040 has a potential benefit on both diseases. Further studies based on these findings will help to optimize the management of AR and asthma.
RESUMO
Evidence linking Faecalibacterium prausnitzii abundance to nonalcoholic fatty liver disease (NAFLD) is accumulating; however, the causal relationship remains obscure. In this study, 12 F. prausnitzii strains were orally administered to high fat diet fed C57BL/6J mice for 12 weeks to evaluate the protective effects of F. prausnitzii on NAFLD. We found that five F. prausnitzii strains, A2-165, LB8, ZF21, PL45, and LC49, significantly restored serum lipid profiles and ameliorated glucose intolerance, adipose tissue dysfunction, hepatic steatosis, inflammation, and oxidative stress in a mouse model of NAFLD. Moreover, two strains, LC49 and LB8, significantly enhanced short-chain fatty acid (SCFA) production and modulated the gut microbiota. Based on the combined analysis of linear discriminant analysis effect size and microbial communities, the core microbiome related to NAFLD comprised Odoribacter, Roseburia, Erysipelatoclostridium, Tyzzerella, Faecalibaculum, Blautia, and Acetatifactor, and the last five genera can be reversed by treatment with the LC49 and LB8 strains. Additionally, the LC49 and LB8 strains enriched Lactobacillus, Ileibacterium, Faecalibacterium, Dubosiella, and Bifidobacterium and downregulated pathways involving carbohydrate metabolism, amino acid metabolism, and fatty acid biosynthesis. Interestingly, LC49 supplementation also upregulated tryptophan metabolism, glutathione metabolism, and valine, leucine, and isoleucine degradation, which might be related to NAFLD prevention. Collectively, F. prausnitzii LC49 and LB8 exerted considerable anti-NAFLD and microbiota-regulating effects, indicating their potential as probiotic agents for NAFLD treatment.
Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Animais , Dieta Hiperlipídica/efeitos adversos , Faecalibacterium , Faecalibacterium prausnitzii , Firmicutes , Microbioma Gastrointestinal/fisiologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismoRESUMO
Oxidative stress and gut dysbiosis are important risk factors for hypertension. In this study, the preventive effect of Bifidobacterium longum CCFM752 (CCFM752) on hypertension was evaluated. 5-week-old spontaneously hypertensive rats (SHR) were treated with vehicle or CCFM752 (1.0 × 109 CFU day-1) for 12 weeks. The increase in systolic blood pressure and diastolic blood pressure was significantly prevented by CCFM752 treatment. Simultaneously, CCFM752 prevented aortic fibrosis and hypertrophy and increased aortic endothelial nitric oxide synthase (eNOS) activity. CCFM752 presented an antioxidative effect by inhibiting aortic NADPH oxidase activation and increasing aortic and serum catalase activity, and reducing aortic reactive oxygen species (ROS). The gut dysbiosis of SHR, including the increased Firmicutes/Bacteroidetes ratio, decreased Actinobacteria as well as reduced α-diversity, were restored by CCFM752. CCFM752 also increased the prevalence of Bifidobacterium and Lactobacillus, while decreasing Turicibacter at the genus level. Furthermore, serum metabolomic analysis revealed that CCFM752 up-regulated serum proline and pyridoxamine 5'-phosphate, both of which were negatively correlated with blood pressure. In conclusion, the positive impact of CCFM752 on the gut microbiota may contribute to the antioxidative effect as well as its preventive effect on hypertension.
Assuntos
Bifidobacterium longum , Microbioma Gastrointestinal , Hipertensão , Animais , Antioxidantes/farmacologia , Pressão Sanguínea , Disbiose/prevenção & controle , Óxido Nítrico Sintase Tipo III , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKYRESUMO
Dietary proteins play a critical role in maintaining the health of elderly people. Although experts recommend that elderly people consume more protein, a high-protein diet may add to the burden of elderly people with degraded digestion and absorption functions. The effects of a normal or high-protein diet and those of a whole or hydrolyzed protein diet on bone and muscle health and gastrointestinal function were evaluated in aged female C57BL/6J mice. The hydrolyzed protein diet with 14.7% protein energy ratio (HNP) contributed to the maintenance of weight and an increase in bone and muscle mass. Further, the overall aging situation was improved by the consumption of this diet. However, the hydrolyzed protein diet with 21.3% protein energy ratio (HHP) increased the levels of LPS, IL-6, IL-10, and TNF-α in serum. Additionally, the small intestine structure was damaged, and the goblet cell number was decreased in the HHP and whole protein with 21.3% protein energy ratio (HP) groups. The relative abundances of Streptococcus and Peptococcus were decreased while that of Bifidobacterium was increased in HNP group compared with the whole protein with 14.7% protein energy ratio (NP) and HP groups. Undigested proteins entering the intestine may cause undesirable changes in gut microbiota, which adversely affect the aging body in NP and HP groups. In summary, hydrolyzed proteins are more advisable than untreated dietary protein in aged mice. This study aimed to provide guidance for daily diet for elderly people, and provide additional information to industry in order to guide their future food development.
Assuntos
Microbioma Gastrointestinal , Idoso , Animais , Bifidobacterium , Dieta Hiperlipídica/efeitos adversos , Feminino , Humanos , Intestinos , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Biofilm formation by bacteria represents an adaptation strategy to the environment, and some special genes may lead to a strong biofilm phenotype. In this study, we attempted to find functional genes associated with bifidobacterial biofilm formation. Firstly, we evaluated the biofilm formation ability of bifidobacterial strains from six species, which showed that Bifidobacterium longum, Bifidobacterium breve, Bifidobacterium animalis, Bifidobacterium adolescentis, and Bifidobacterium pseudocatenulatum had biofilm-forming and non-biofilm-forming strains, while all Bifidobacterium bifidum strains could form strong biofilms. Then 48 strains were selected for genome sequencing and comparative analysis. The gene-trait matching analysis revealed that B. bifidum biofilm formation phenotype may associate with their unique genes, involving in stress response, quorum sensing, two components, and peptide synthesis. B. pseudocatenulatum biofilm formation was positively correlated with the eps cluster (rfbX). While no genotype related to the biofilm phenotype was found in B. longum using this analysis, but all contain autoinducer-2 (AI-2) receptor genes. Moreover, luxS, rbsB, rfbX were selected for real-time qPCR analysis, suggesting that their expression are important to biofilm formation. These results indicated that strains carrying certain genes tend to form stronger biofilms than those formed by strains without these genes.
Assuntos
Bifidobacterium , Percepção de Quorum , Bactérias , Bifidobacterium/genética , Bifidobacterium/metabolismo , Biofilmes , Fenótipo , Percepção de Quorum/genéticaRESUMO
Gut microbial disturbance affects allergic diseases including asthma, atopic dermatitis (AD) via the aberrant immune response. Some Bifidobacterial species and strains have been reported to improve AD via modulating immune-microbe interactions in patients. However, the effective metabolites and mechanism of alleviating AD in bifidobacteria remain to be elucidated. This study aimed to explore the microbial metabolite and mechanism of Bifidobacterium longum to improve AD. Based on shotgun metagenomic sequencing and UHPLC Q-Exactive-MS targeted metabolic experiments in vitro and in vivo, we focused on tryptophan metabolism and indole derivatives, which are endogenous ligands for aryl hydrocarbon receptor (AHR). Indole-3-carbaldehyde (I3C), a tryptophan metabolite of B. longum CCFM1029 activated AHR-mediated immune signaling pathway to improve AD symptoms in animal and clinical experiments. B. longum CCFM1029 upregulated tryptophan metabolism and increased I3C to suppress aberrant T helper 2 type immune responses, but these benefits were eliminated by AHR antagonist CH223191. Furthermore, B. longum CCFM1029 reshaped gut microbial composition in AD patients, increased fecal and serum I3C, and maintained the abundance of Lachnospiraceae related to tryptophan metabolism of gut microbiota. The results suggested that based on the interactions of the gut-skin axis, B. longum CCFM1029 upregulated tryptophan metabolism and produced I3C to activate AHR-mediated immune response, alleviating AD symptoms. Indole derivates, microbial metabolites of tryptophan, may be the potential metabolites of bifidobacteria to alleviate AD via the AHR signaling pathway.
Assuntos
Bifidobacterium longum , Dermatite Atópica , Microbioma Gastrointestinal , Animais , Bifidobacterium/genética , Bifidobacterium/metabolismo , Bifidobacterium longum/genética , Bifidobacterium longum/metabolismo , Humanos , Indóis/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Triptofano/metabolismoRESUMO
Food allergy (FA) is a common immune disorder caused by food antigens. Probiotic strains showed alleviating effects on FA, such as the alleviation of FA pathological symptoms, serum OVA-sIgE levels, and the gut microbiota diversity and composition. The results showed that intragastric administration of Lactiplantibacillus plantarum CCFM1189, Limosilactobacillus reuteri CCFM1190, and Bifidobacterium longum CCFM1029 alleviated the weight loss and FA pathological symptoms of FA mice and decreased OVA-specific IgE and histamine (HIS) levels. CCFM1189 and CCFM1190 decreased IL-4, IL-5, and IL-13 levels, while CCFM1189 and CCFM 1029 decreased IL-17 levels. The gut microbiota analysis demonstrated that CCFM1189 increased the abundance of Akkermansia, while CCFM1190 improved immune regulation bacteria such as Faecalibaculum. CCFM1029 increased Bifidobacterium and the bacteria involved in short-chain fatty acid (SCFA) production, such as Dubosiella. L. plantarum CCFM1189 and L. reuteri CCFM1190 improved indoleacrylic acid levels in mouse fecal samples using untargeted metabolomics analysis. In conclusion, CCFM1189, CCFM1190, and CCFM1029 decreased Th2 immune responses and alleviated FA pathological symptoms by regulating the gut microbiota diversity and composition, and altering gut microbial metabolites, which could provide support in clinical tests and probiotic production in the future.
Assuntos
Hipersensibilidade Alimentar , Microbioma Gastrointestinal , Probióticos , Animais , Indóis , Camundongos , Ovalbumina , Probióticos/farmacologiaRESUMO
Antibiotic-induced host health imbalance during upper respiratory tract infection (URTI) treatment is an emerging issue. Studies have confirmed that Lactobacillus casei 431 and Lactobacillus fermentum PCC alleviate gut microbiome dysbiosis and improve immune response. However, their effect on the upper respiratory tract (URT) microbial structure and the correlation between the URT microbiota and immunological indicators remain unclear. To evaluate the effects of Lactobacillus strains on restoring penicillin-induced imbalance in the URT microbiome and on immune response, Lactobacillus fermentum PCC and Lactobacillus casei 431 were individually administered to penicillin-pretreated mice, and their effects were assessed. The results revealed that L. casei 431 and L. fermentum PCC could regulate the systemic immune response imbalance, but the regulation direction of L. fermentum PCC was closer to that of the control group. Moreover, the Lactobacillus strains could restore penicillin-induced URT dysbacteriosis in the microbial community structure, but no significant change in alpha diversity was observed. The key bacterial taxa modulated by L. casei 431 were Faecalibaculum, Lactococcus, and Ralstonia. L. fermentum PCC enhanced biofilms and facultatively anaerobic bacteria. Different regulation pathways were observed in the two strains, and RDA revealed that both L. casei 431 and L. fermentum PCC groups were correlated with IL-17 and IL-1α, while the L. casei 431 group was also correlated with IL-6. In conclusion, L. casei 431 and L. fermentum PCC could beneficially and differentially ameliorate penicillin-induced imbalance in the URT microbial composition structure and functional metabolic pathways and modulate immune response, reflecting strain-specific regulation.