Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Commun Signal ; 22(1): 65, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267954

RESUMO

Protein Phosphatase 1 (PP1) is a major serine/threonine phosphatase in eukaryotes, participating in several cellular processes and metabolic pathways. Due to their low substrate specificity, PP1's catalytic subunits do not exist as free entities but instead bind to Regulatory Interactors of Protein Phosphatase One (RIPPO), which regulate PP1's substrate specificity and subcellular localization. Most RIPPOs bind to PP1 through combinations of short linear motifs (4-12 residues), forming highly specific PP1 holoenzymes. These PP1-binding motifs may, hence, represent attractive targets for the development of specific drugs that interfere with a subset of PP1 holoenzymes. Several viruses exploit the host cell protein (de)phosphorylation machinery to ensure efficient virus particle formation and propagation. While the role of many host cell kinases in viral life cycles has been extensively studied, the targeting of phosphatases by viral proteins has been studied in less detail. Here, we compile and review what is known concerning the role of PP1 in the context of viral infections and discuss how it may constitute a putative host-based target for the development of novel antiviral strategies.


Assuntos
Processamento de Proteína Pós-Traducional , Viroses , Humanos , Proteína Fosfatase 1 , Fosforilação , Fatores de Transcrição , Holoenzimas
2.
Mol Biol Rep ; 50(3): 2763-2778, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36583779

RESUMO

Galectin-3 (Gal-3) belongs to galectin protein family, a type of ß-galactose-binding lectin having more than one evolutionarily conserved domain of carbohydrate recognition. Gal-3 is mainly located in the cytoplasm, but it also enters the nucleus and is secreted into the extracellular environment and biological fluids such as urine, saliva, and serum. It plays an important role in many biological functions, such as angiogenesis, apoptosis, cell differentiation, cell growth, fibrosis, inflammation, host defense, cellular modification, splicing of pre-mRNA, and transformation. Many previous studies have shown that Gal-3 can be used as a diagnostic or prognostic biomarker for heart ailments, kidney diseases, and other major illnesses including cancer. Moreover, it may also play a major role in risk stratification in different diseases, and in this review, we have summarized the potential roles and application of Gal-3 as diagnostic, prognostic, and risk stratifying biomarker from previously reported studies in heart diseases and cancer, with special emphasis on prostate cancer.


Assuntos
Cardiopatias , Neoplasias da Próstata , Humanos , Masculino , Biomarcadores , Galectina 3/genética , Galectinas/genética , Cardiopatias/diagnóstico , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo
3.
Exp Cell Res ; 418(2): 113282, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35841980

RESUMO

The Ser/Thr-protein phosphatase PP1 (PP1) is a positive regulator of the androgen receptor (AR), which suggests major roles for PP1 in prostate carcinogenesis. However, studies dedicated to the characterization of PP1 in PCa are currently scarce. Here we analyzed the expression and localization of the PP1 catalytic (PP1c) isoforms in formalin-fixed, paraffin-embedded prostate tissue samples, as well as in PCa cell lines. We also analyzed well-characterized PCa cohorts to determine their transcript levels, identify genetic alterations, and assess promoter methylation of PP1c-coding genes. We found that PP-1A was upregulated and relocalized towards the nucleus in PCa and that PPP1CA was frequently amplified in PCa, particularly in advanced stages. PP-1B was downregulated in PCa but upregulated in a subset of tumors with AR amplification. PP-1G transcript levels were found to be associated with Gleason score. PP1c-coding genes were rarely mutated in PCa and were not prone to regulation by promoter methylation. Protein phosphorylation, on the other hand, might be an important regulatory mechanism of PP1c isoforms' activity. Altogether, our results suggest differential expression, localization, and regulation of PP1c isoforms in PCa and support the need for investigating isoform-specific roles in prostate carcinogenesis in future studies.


Assuntos
Núcleo Celular , Neoplasias da Próstata , Carcinogênese/metabolismo , Núcleo Celular/metabolismo , Humanos , Masculino , Fosforilação , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo
4.
J Proteome Res ; 21(2): 447-458, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35114790

RESUMO

Prostate cancer (PCa) is the most prevalent noncutaneous cancer among men. The limited accuracy and/or invasive nature of the current diagnostic tools have driven the demand for new and noninvasive biomarkers. Urine as a noninvasive sample that contains prostatic secretions is a promising source of PCa markers. The automatic text-mining functionality of VOSviewer was used to retrieve and create co-occurrence networks of terms associated with PCa. These results were complemented with DisGENET data, a repository of PCa associations, and with a recent bioinformatic analysis integrating all differentially expressed proteins identified in tumor tissue and urine from PCa patients to address the limited term selection of VOSviewer. Afterward, the results were integrated with gene expression data from the Gene Expression Omnibus database to correlate gene and protein levels. This study suggests AXIN2, GSTM2, KLK3, LGALS3, MSMB, PRTFDC1, and SH3RF1 as important entities in PCa context. KLK, LGALS3, and MSMB proteins are common to a previous bioinformatic analysis, and a concordance was found between the levels of gene and protein expression. The applicability of the pipeline presented here was validated by showing altered urinary levels of galectin-3 protein in PCa patients compared to noncancer subjects.


Assuntos
Próstata , Neoplasias da Próstata , Biomarcadores Tumorais/metabolismo , Mineração de Dados , Genômica , Humanos , Masculino , Próstata/metabolismo , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proteômica/métodos
5.
Immunogenetics ; 74(5): 475-485, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35419618

RESUMO

Toll-like receptors (TLRs) are one of the most ancient and widely studied innate immune receptors responsible for host defense against invading pathogens. Among the known TLRs, TLR7 and TLR8 sense and recognize single-stranded (ss) RNAs with a dynamic evolutionary history. While TLR8 was lost in birds and duplicated in turtles and crocodiles, TLR7 is duplicated in some birds, but in other tetrapods, there is only one copy. In mammals, with the exception of lagomorphs, TLR7 and TLR8 are highly conserved. Here, we aim to study the evolution of TLR7 and TLR8 in mammals, with a special focus in the order Lagomorpha. By searching public sequence databases, conducting evolutionary analysis, and evaluating gene expression, we were able to confirm that TLR8 is absent in hares but widely expressed in the European rabbit. In contrast, TLR7 is absent in the European rabbit and quite divergent in hares. Our results suggest that, in lagomorphs, more in particular in leporids, TLR7 and TLR8 genes have evolved faster than in any other mammalian group. The long history of interaction with viruses and their location in highly dynamic telomeric regions might explain the pattern observed.


Assuntos
Lebres , Lagomorpha , Animais , Lebres/metabolismo , Coelhos , Receptor 7 Toll-Like/genética , Receptor 8 Toll-Like/genética
6.
Int J Mol Sci ; 23(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36499559

RESUMO

Male fertility relies on the ability of spermatozoa to fertilize the egg in the female reproductive tract (FRT). Spermatozoa acquire activated motility during epididymal maturation; however, to be capable of fertilization, they must achieve hyperactivated motility in the FRT. Extensive research found that three protein phosphatases (PPs) are crucial to sperm motility regulation, the sperm-specific protein phosphatase type 1 (PP1) isoform gamma 2 (PP1γ2), protein phosphatase type 2A (PP2A) and protein phosphatase type 2B (PP2B). Studies have reported that PP activity decreases during epididymal maturation, whereas protein kinase activity increases, which appears to be a requirement for motility acquisition. An interplay between these PPs has been extensively investigated; however, many specific interactions and some inconsistencies remain to be elucidated. The study of PPs significantly advanced following the identification of naturally occurring toxins, including calyculin A, okadaic acid, cyclosporin, endothall and deltamethrin, which are powerful and specific PP inhibitors. This review aims to overview the protein phosphorylation-dependent biochemical pathways underlying sperm motility acquisition and hyperactivation, followed by a discussion of the PP inhibitors that allowed advances in the current knowledge of these pathways. Since male infertility cases still attain alarming numbers, additional research on the topic is required, particularly using other PP inhibitors.


Assuntos
Calcineurina , Motilidade dos Espermatozoides , Humanos , Masculino , Feminino , Sêmen , Epididimo , Proteína Fosfatase 2 , Espermatozoides/fisiologia , Proteína Fosfatase 1 , Inibidores Enzimáticos/farmacologia , Fosforilação
7.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36232916

RESUMO

Aging is associated with testicular morphological and functional alterations, but the underlying molecular mechanisms and the impact of physical exercise are poorly understood. In this study, we examined the effects of age and lifelong moderate-intensity exercise on rat testis. Mature adults (35 weeks) and middle-aged (61 weeks) Wistar Unilever male rats were maintained as sedentary or subjected to a lifelong moderate-intensity treadmill training protocol. Testis weight and histology, mitochondrial biogenesis and function, and proteins involved in protein synthesis and stress response were evaluated. Our results illustrate an age-induced testicular atrophy that was associated with alterations in stress response, and mitochondrial biogenesis and function. Aging was associated with increased testicular levels of heat shock protein beta-1 (HSP27) and antioxidant enzymes. Aging was also associated with decreased mRNA abundance of the nuclear respiratory factor 1 (Nrf1), a key transcription factor for mitochondrial biogenesis, which was accompanied by decreased protein levels of the oxidative phosphorylation system (OXPHOS) complexes subunits in the testes of older animals. On the other hand, exercise did not protect against age-induced testicular atrophy and led to deleterious effects on sperm morphology. Exercise led to an even more pronounced decrease in the Nrf1 mRNA levels in testes of both age groups and was associated with decreased mRNA abundance of other mitochondrial biogenesis markers and decreased protein levels of OXPHOS complexes subunits. Lifelong moderate-intensity exercise training was also associated with an increase in testicular oxidative stress markers and possibly with reduced translation. Together, our results indicate that exercise did not protect against age-induced testicular atrophy and was not associated with beneficial changes in mitochondria and stress response, further activating mechanisms of protein synthesis inhibition.


Assuntos
Fatores Etários , Condicionamento Físico Animal , Testículo , Animais , Antioxidantes/metabolismo , Atrofia , Proteínas de Choque Térmico HSP27 , Masculino , Fator 1 Nuclear Respiratório , Condicionamento Físico Animal/fisiologia , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Sêmen/metabolismo , Testículo/fisiologia , Fatores de Transcrição
8.
Int J Mol Sci ; 23(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35886909

RESUMO

Prostate cancer (PCa) is one of the most lethal diseases in men, which justifies the search for new diagnostic tools. The aim of the present study was to gain new insights into the progression of prostate carcinogenesis by analyzing the urine proteome. To this end, urine from healthy animals and animals with prostate adenocarcinoma was analyzed at two time points: 27 and 54 weeks. After 54 weeks, the incidence of pre-neoplastic and neoplastic lesions in the PCa animals was 100%. GeLC-MS/MS and subsequent bioinformatics analyses revealed several proteins involved in prostate carcinogenesis. Increased levels of retinol-binding protein 4 and decreased levels of cadherin-2 appear to be characteristic of early stages of the disease, whereas increased levels of enolase-1 and T-kininogen 2 and decreased levels of isocitrate dehydrogenase 2 describe more advanced stages. With increasing age, urinary levels of clusterin and corticosteroid-binding globulin increased and neprilysin levels decreased, all of which appear to play a role in prostate hyperplasia or carcinogenesis. The present exploratory analysis can be considered as a starting point for studies targeting specific human urine proteins for early detection of age-related maladaptive changes in the prostate that may lead to cancer.


Assuntos
Próstata , Neoplasias da Próstata , Animais , Carcinogênese/patologia , Modelos Animais de Doenças , Masculino , Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/urina , Proteoma/química , Espectrometria de Massas em Tandem
9.
Molecules ; 27(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36235040

RESUMO

G protein-coupled receptors (GPCRs) are involved in several physiological processes, and they represent the largest family of drug targets to date. However, the presence and function of these receptors are poorly described in human spermatozoa. Here, we aimed to identify and characterize the GPCRs present in human spermatozoa and perform an in silico analysis to understand their potential role in sperm functions. The human sperm proteome, including proteomic studies in which the criteria used for protein identification was set as <5% FDR and a minimum of 2 peptides match per protein, was crossed with the list of GPCRs retrieved from GLASS and GPCRdb databases. A total of 71 GPCRs were identified in human spermatozoa, of which 7 had selective expression in male tissues (epididymis, seminal vesicles, and testis), and 9 were associated with male infertility defects in mice. Additionally, ADRA2A, AGTR1, AGTR2, FZD3, and GLP1R were already associated with sperm-specific functions such as sperm capacitation, acrosome reaction, and motility, representing potential targets to modulate and improve sperm function. Finally, the protein-protein interaction network for the human sperm GPCRs revealed that 24 GPCRs interact with 49 proteins involved in crucial processes for sperm formation, maturation, and fertilization. This approach allowed the identification of 8 relevant GPCRs (ADGRE5, ADGRL2, GLP1R, AGTR2, CELSR2, FZD3, CELSR3, and GABBR1) present in human spermatozoa that can be the subject of further investigation to be used even as potential modulatory targets to treat male infertility or to develop new non-hormonal male contraceptives.


Assuntos
Anticoncepcionais Masculinos , Infertilidade Masculina , Animais , Caderinas/metabolismo , Anticoncepcionais Masculinos/metabolismo , Anticoncepcionais Masculinos/farmacologia , Humanos , Infertilidade Masculina/metabolismo , Masculino , Camundongos , Proteoma/metabolismo , Proteômica , Receptores de Superfície Celular/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Sêmen/metabolismo , Motilidade dos Espermatozoides , Espermatozoides/metabolismo
10.
Pharmacol Res ; 161: 105145, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32814172

RESUMO

Prostate cancer (PCa) is one of the most common male-specific cancers worldwide, with high morbidity and mortality rates associated with advanced disease stages. The current treatment options of PCa are prostatectomy, hormonal therapy, chemotherapy or radiotherapy, the selection of which is usually dependent upon the stage of the disease. The development of PCa to a castration-resistant phenotype (CRPC) is associated with a more severe prognosis requiring the development of a new and effective therapy. Protein-protein interactions (PPIs) have been recognised as an emerging drug modality and targeting PPIs is a promising therapeutic approach for several diseases, including cancer. The efficacy of several compounds in which target PPIs and consequently impair disease progression were validated in phase I/II clinical trials for different types of cancer. In PCa, various small molecules and peptides proved successful in inhibiting important PPIs, mainly associated with the androgen receptor (AR), Bcl-2 family proteins, and kinases/phosphatases, thus impairing the growth of PCa cells in vitro. Moreover, a majority of these compounds require further validation in vivo and, preferably, in clinical trials. In addition, several other PPIs associated with PCa progression have been identified and now require experimental validation as potential therapeutic loci. In conclusion, we consider the disruption of PPIs to be a promising though challenging therapeutic strategy for PCa. Agents which modulate PPIs might be employed as a monotherapy or as an adjunct to classical chemotherapeutics to overcome drug resistance and improve efficacy. The discovery of new PPIs with important roles in disease progression, and of novel optimized strategies to target them are major challenges for the scientific and pharmacological communities.


Assuntos
Antineoplásicos/uso terapêutico , Desenho de Fármacos , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias da Próstata/tratamento farmacológico , Mapas de Interação de Proteínas , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Resistencia a Medicamentos Antineoplásicos , Humanos , Masculino , Terapia de Alvo Molecular , Proteínas de Neoplasias/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Transdução de Sinais
11.
Carcinogenesis ; 40(2): 203-215, 2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-30596981

RESUMO

Resistant breast and prostate cancers remain a major clinical problem, new therapeutic approaches and better predictors of therapeutic response are clearly needed. Because of the involvement of the unfolded protein response (UPR) in cell proliferation and apoptosis evasion, an increasing number of publications support the hypothesis that impairments in this network trigger and/or exacerbate cancer. Moreover, UPR activation could contribute to the development of drug resistance phenotypes in both breast and prostate cancers. Therefore, targeting this pathway has recently emerged as a promising strategy in anticancer therapy. This review addresses the contribution of UPR to breast and prostate tissues homeostasis and its significance to cancer endocrine response with focus on the current progress on UPR research related to cancer biology, detection, prognosis and treatment.


Assuntos
Neoplasias da Mama/patologia , Mama/patologia , Células Endócrinas/patologia , Homeostase/fisiologia , Próstata/patologia , Neoplasias da Próstata/patologia , Resposta a Proteínas não Dobradas/fisiologia , Animais , Apoptose/fisiologia , Proliferação de Células/fisiologia , Feminino , Humanos , Masculino
12.
J Biol Chem ; 293(47): 18031-18039, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30305391

RESUMO

Germ cell proliferation is epigenetically controlled, mainly through DNA methylation and histone modifications. However, the pivotal epigenetic regulators of germ cell self-renewal and differentiation in postnatal testis are still poorly defined. The histone methyltransferase enhancer of zeste homolog 2 (EZH2) is the catalytic subunit of Polycomb repressive complex 2, represses target genes through trimethylation of histone H3 at Lys-27 (H3K27me3), and interacts (in)directly with both protein phosphatase 1 (PP1) and nuclear inhibitor of PP1 (NIPP1). Here, we report that postnatal, testis-specific ablation of NIPP1 in mice results in loss of EZH2 and reduces H3K27me3 levels. Mechanistically, the NIPP1 deletion abrogated PP1-mediated EZH2 dephosphorylation at two cyclin-dependent kinase sites (Thr-345/487), thereby generating hyperphosphorylated EZH2, which is a substrate for proteolytic degradation. Accordingly, alanine mutation of these residues prolonged the half-life of EZH2 in male germ cells. Our study discloses a key role for the PP1:NIPP1 holoenzyme in stabilizing EZH2 and maintaining the H3K27me3 mark on genes that are important for germ cell development and spermatogenesis.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Deleção de Genes , Peptídeos e Proteínas de Sinalização Intracelular/genética , Testículo/metabolismo , Animais , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Histonas/genética , Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Metilação , Camundongos , Camundongos Knockout , Fosforilação , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Proteólise , Espermatogênese , Testículo/crescimento & desenvolvimento
13.
Eur J Appl Physiol ; 119(1): 1-8, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30196449

RESUMO

PURPOSE: The impact of exercise training on testicular function is relatively ill-defined. To gain new insights into this important topic, published data, deriving from both humans and animal studies, were critically analyzed. RESULTS AND CONCLUSIONS: The effects of exercise on the hypothalamus-pituitary-gonadal axis, influenced by the type, intensity and duration of the exercise program, can be evaluated in terms of total and free testosterone and/or luteinizing hormone and follicle-stimulating hormone serum levels and sperm parameters. High-intensity exercise promotes a common decrease in these parameters, and therefore, negatively impacts upon testicular function. However, published data for moderate-intensity exercise training are inconsistent. Conversely, there is consistent evidence to support the benefits of exercise training to prevent and/or counteract the impairment of testis function caused by aging, obesity and doxorubicin treatment. This positive effect is likely the consequence of decreased oxidative stress and inflammatory status. In the future, it will be important to clarify the molecular mechanisms which explain these reported discrepancies and to establish guidelines for an active lifestyle to promote healthy testicular function.


Assuntos
Exercício Físico/fisiologia , Testículo/fisiologia , Humanos , Sistema Hipotálamo-Hipofisário/fisiologia , Masculino , Testosterona/sangue
14.
Int J Mol Sci ; 20(21)2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31694346

RESUMO

The unfolded protein response (UPR) is involved in protein quality control and is activated in response to several stressors. Although in testis the UPR mechanisms are well described, their presence in spermatozoa is contentious. We aimed to investigate the presence of UPR-related proteins in human sperm and the impact of oxidative stress induction in UPR activation. To identify UPR-related proteins in human sperm, a bioinformatic approach was adopted. To explore the activation of UPR, sperm were exposed to hydrogen peroxide (H2O2) and motility, vitality, and the levels of UPR-related proteins were assessed. We identified 97 UPR-related proteins in human sperm and showed, for the first time, the presence of HSF1, GADD34, and phosphorylated eIF2α. Additionally, the exposure of human sperm to H2O2 resulted in a significant decrease in sperm viability and motility and an increase in the levels of HSF1, HSP90, HSP60, HSP27, and eIF2α; all proteins involved in sensing and response to unfolded proteins. This study gave us a first insight into the presence of UPR mechanisms in the male gamete. However, the belief that sperm are devoid of transcription and translation highlight the need to clarify if these pathways are activated in sperm in the same way as in somatic cells.


Assuntos
Estresse Oxidativo , Espermatozoides/metabolismo , Resposta a Proteínas não Dobradas , Sobrevivência Celular , Humanos , Masculino , Motilidade dos Espermatozoides , Espermatozoides/citologia
15.
An Acad Bras Cienc ; 90(1 Suppl 2): 1101-1130, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29873674

RESUMO

Photodynamic therapy (PDT) is a modality of cancer treatment in which tumor cells are destroyed by reactive oxygen species (ROS) produced by photosensitizers following its activation with visible or near infrared light. The PDT success is dependent on different factors namely on the efficiency of the photosensitizer deliver and targeting ability. In this review a special attention will be given to the role of some drug delivery systems to improve the efficiency of tetrapyrrolic photosensitizers to this type of treatment.


Assuntos
Nanopartículas/administração & dosagem , Neoplasias/tratamento farmacológico , Fotoquimioterapia , Fármacos Fotossensibilizantes/administração & dosagem , Sistemas de Liberação de Medicamentos , Humanos , Nanopartículas/química , Fármacos Fotossensibilizantes/química , Espécies Reativas de Oxigênio
16.
Biol Reprod ; 96(1): 2-12, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28395326

RESUMO

The goal of sperm is to fertilize the oocyte. To achieve that purpose, it must acquire motility in the epididymis and hyperactivated motility in the female reproductive tract. Motility is only achieved when the sperm presents a fully functional flagellum, is capable of producing energy to fuel the movement, and suffers epididymal maturation and capacitation. Since sperm is a transcriptionally silent cell, motility depends on the activation and/or inhibitions of key signaling pathways. This review describes and discusses the main signaling pathways involved in primary and hyperactivated motility, as well as the bioenergetic mechanisms necessary to produce energy to fuel sperm motility. Although the complete human sperm motility process is far from being fully known, we believe that in the upcoming decades extensive progress will be made. Understanding the signaling pathways behind sperm motility can help pinpoint the cause of male infertility and uncover targets for male contraception.


Assuntos
Motilidade dos Espermatozoides , Espermatozoides/metabolismo , Glicólise , Humanos , Masculino , Fosforilação Oxidativa , Transdução de Sinais , Cauda do Espermatozoide/fisiologia
17.
Biochim Biophys Acta Gen Subj ; 1861(2): 375-385, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27913189

RESUMO

BACKGROUND: Phosphoprotein phosphatase 1 catalytic subunit gamma 2 (PPP1CC2), a PPP1CC tissue-specific alternative splice restricted to testicular germ cells and spermatozoa, is essential for spermatogenesis and spermatozoa motility. The key to understand PPP1CC2 regulation lies on the characterization of its interacting partners. METHODS: We construct a testis/sperm-enriched protein interaction network and analyzed the topological properties and biological context of the network. Further the interaction of a potential target for pharmacological intervention was validated in human spermatozoa. RESULTS: A total of 1778 proteins and 32,187 interactions between them were identified in the testis/sperm-enriched network. The network analysis revealed the members of functional modules that interact more tightly with each other. In the network, PPP1CC was located in the fourth maximum core part (k=41) and had 106 direct interactors. Sixteen PPP1CC interactors were involved in spermatogenesis-related categories. Also, PPP1CC had 50 direct interactors, highly interconnected and many of them part of the network maximum core (k=44), associated with motility-related annotations, including several previously uncharacterized interactors, such as, LMNA, JAK2 and RIPK3. CONCLUSIONS: In this study we integrated tissue-specific protein expression and protein-protein interaction data in order to identify key PPP1CC2 complexes for male reproductive functions. One of the most intriguing interactors was A-kinase anchor protein 4 (AKAP4), a testis-specific protein related to infertility phenotypes and involved in all major motility-related annotations. GENERAL SIGNIFICANCE: We demonstrated for the first time the interaction between PPP1CC2 and AKAP4 in human spermatozoa and the potential of the complex as contraceptive target.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Mapas de Interação de Proteínas/fisiologia , Proteínas de Ligação a RNA/metabolismo , Espermatozoides/metabolismo , Testículo/metabolismo , Proteínas de Ancoragem à Quinase A/metabolismo , Humanos , Infertilidade/metabolismo , Infertilidade/patologia , Janus Quinase 2/metabolismo , Lamina Tipo A/metabolismo , Masculino , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Motilidade dos Espermatozoides/fisiologia , Espermatogênese/fisiologia
18.
Photochem Photobiol Sci ; 16(5): 744-752, 2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28304067

RESUMO

Extensive exposure to UVA is thought to increase the risk of malignancy and the progression of melanoma, the most serious type of skin cancer. It is well known that alterations in lipid metabolism represent an early event in carcinogenesis, but the impact of UVA exposure on the lipid composition of cancer cells is still largely unknown. In this study we aimed at investigating lipid remodeling in human melanoma cells in response to UVA exposure. After UVA irradiation, lipid extracts were either immediately collected from SK-MEL-28 cells or collected after a recovery period of 2 h or 24 h. The lipid profiles for each event were determined by liquid chromatography or gas chromatography coupled to mass spectrometry. UVA exposure led to major alterations in both fatty acids (FA) and phospholipid profiles. An increase of monounsaturated FA (MUFA) and FA18:0, as well as a decrease of FA16:0, were observed 24 h after irradiation. Moreover, phosphatidylcholine (PC) decreased and phosphatidylinositol (PI) increased after UVA exposure. Molecular alterations in the PC, lysoPC, PI, phosphatidylethanolamine (PE), ether-linked PE and phosphatidylglycerol (PG) profiles were also observed. The absence of cleaved caspase-3 after 2 h and 24 h of re-incubation is correlated with impairment of apoptosis. Overall, these data showed changes in membrane lipids, which may be associated with lipogenesis after UVA exposure which, in turn, is usually a determinant for cell survival.


Assuntos
Melanoma/química , Fosfolipídeos/metabolismo , Raios Ultravioleta , Humanos , Melanoma/metabolismo , Melanoma/patologia , Fosfolipídeos/química , Células Tumorais Cultivadas
19.
Reprod Fertil Dev ; 28(7): 1009-1019, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25562328

RESUMO

Phosphoprotein phosphatase 1 (PPP1) catalytic subunit gamma 2 (PPP1CC2), a PPP1 isoform, is largely restricted to testicular germ cells and spermatozoa. The key to understanding PPP1 regulation in male germ cells lies in the identification and characterisation of its interacting partners. This study was undertaken to determine the expression patterns of the several ankyrin repeat protein variant 2 (SARP2), a PPP1-interacting protein, in testis and spermatozoa. SARP2 was found to be highly expressed in testis and spermatozoa, and its interaction with human spermatozoa endogenous PPP1CC2 was confirmed by immunoprecipitation. Expression analysis by RT-qPCR revealed that SARP2 and PPP1CC2 mRNA levels were significantly higher in the spermatocyte fraction. However, microscopy revealed that SARP2 protein was only present in the nucleus of elongating and mature spermatids and in spermatozoa. In spermatozoa, SARP2 was prominently expressed in the connecting piece and flagellum, as well as, to a lesser extent, in the acrosome. A yeast two-hybrid approach was used to detect SARP2-interacting proteins and a relevant interaction with a novel sperm-associated antigen 9 (SPAG9) variant, a testis and spermatozoa-specific c-Jun N-terminal kinase-binding protein, was validated in human spermatozoa. Given the expression pattern of SARP2 and its association with PPP1CC2 and SPAG9, it may play a role in spermiogenesis and sperm function, namely in sperm motility and the acrosome reaction.


Assuntos
Repetição de Anquirina , Proteína Fosfatase 1/fisiologia , Espermatozoides/fisiologia , Testículo/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Humanos , Masculino , Motilidade dos Espermatozoides , Espermatogênese
20.
BMC Bioinformatics ; 16: 12, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25591988

RESUMO

BACKGROUND: Amyloid precursor protein (APP) is widely recognized for playing a central role in Alzheimer's disease pathogenesis. Although APP is expressed in several tissues outside the human central nervous system, the functions of APP and its family members in other tissues are still poorly understood. APP is involved in several biological functions which might be potentially important for male fertility, such as cell adhesion, cell motility, signaling, and apoptosis. Furthermore, APP superfamily members are known to be associated with fertility. Knowledge on the protein networks of APP in human testis and spermatozoa will shed light on the function of APP in the male reproductive system. RESULTS: We performed a Yeast Two-Hybrid screen and a database search to study the interaction network of APP in human testis and sperm. To gain insights into the role of APP superfamily members in fertility, the study was extended to APP-like protein 2 (APLP2). We analyzed several topological properties of the APP interaction network and the biological and physiological properties of the proteins in the APP interaction network were also specified by gene ontologyand pathways analyses. We classified significant features related to the human male reproduction for the APP interacting proteins and identified modules of proteins with similar functional roles which may show cooperative behavior for male fertility. CONCLUSIONS: The present work provides the first report on the APP interactome in human testis. Our approach allowed the identification of novel interactions and recognition of key APP interacting proteins for male reproduction, particularly in sperm-oocyte interaction.


Assuntos
Testículo/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Humanos , Masculino , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Reprodução , Espermatozoides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA