Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 44(6): 1432-1446, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38660800

RESUMO

BACKGROUND: Vascular calcification causes significant morbidity and occurs frequently in diseases of calcium/phosphate imbalance. Radiolabeled sodium fluoride positron emission tomography/computed tomography has emerged as a sensitive and specific method for detecting and quantifying active microcalcifications. We developed a novel technique to quantify and map total vasculature microcalcification to a common space, allowing simultaneous assessment of global disease burden and precise tracking of site-specific microcalcifications across time and individuals. METHODS: To develop this technique, 4 patients with hyperphosphatemic familial tumoral calcinosis, a monogenic disorder of FGF23 (fibroblast growth factor-23) deficiency with a high prevalence of vascular calcification, underwent radiolabeled sodium fluoride positron emission tomography/computed tomography imaging. One patient received serial imaging 1 year after treatment with an IL-1 (interleukin-1) antagonist. A radiolabeled sodium fluoride-based microcalcification score, as well as calcification volume, was computed at all perpendicular slices, which were then mapped onto a standardized vascular atlas. Segment-wise mCSmean and mCSmax were computed to compare microcalcification score levels at predefined vascular segments within subjects. RESULTS: Patients with hyperphosphatemic familial tumoral calcinosis had notable peaks in microcalcification score near the aortic bifurcation and distal femoral arteries, compared with a control subject who had uniform distribution of vascular radiolabeled sodium fluoride uptake. This technique also identified microcalcification in a 17-year-old patient, who had no computed tomography-defined calcification. This technique could not only detect a decrease in microcalcification score throughout the patient treated with an IL-1 antagonist but it also identified anatomic areas that had increased responsiveness while there was no change in computed tomography-defined macrocalcification after treatment. CONCLUSIONS: This technique affords the ability to visualize spatial patterns of the active microcalcification process in the peripheral vasculature. Further, this technique affords the ability to track microcalcifications at precise locations not only across time but also across subjects. This technique is readily adaptable to other diseases of vascular calcification and may represent a significant advance in the field of vascular biology.


Assuntos
Fator de Crescimento de Fibroblastos 23 , Radioisótopos de Flúor , Hiperfosfatemia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Compostos Radiofarmacêuticos , Fluoreto de Sódio , Calcificação Vascular , Humanos , Hiperfosfatemia/genética , Hiperfosfatemia/diagnóstico por imagem , Masculino , Feminino , Calcificação Vascular/diagnóstico por imagem , Calcificação Vascular/genética , Adulto , Valor Preditivo dos Testes , Pessoa de Meia-Idade , Adolescente , Adulto Jovem , Calcinose/genética , Calcinose/diagnóstico por imagem , Hiperostose Cortical Congênita
2.
Artigo em Inglês | MEDLINE | ID: mdl-38626754

RESUMO

OBJECTIVE: Different methods can be used to condition imaging systems for clinical use. The purpose of this study was to assess how these methods complement one another in evaluating a system for clinical integration of an emerging technology, photon-counting computed tomography (PCCT), for thoracic imaging. METHODS: Four methods were used to assess a clinical PCCT system (NAEOTOM Alpha; Siemens Healthineers, Forchheim, Germany) across 3 reconstruction kernels (Br40f, Br48f, and Br56f). First, a phantom evaluation was performed using a computed tomography quality control phantom to characterize noise magnitude, spatial resolution, and detectability. Second, clinical images acquired using conventional and PCCT systems were used for a multi-institutional reader study where readers from 2 institutions were asked to rank their preference of images. Third, the clinical images were assessed in terms of in vivo image quality characterization of global noise index and detectability. Fourth, a virtual imaging trial was conducted using a validated simulation platform (DukeSim) that models PCCT and a virtual patient model (XCAT) with embedded lung lesions imaged under differing conditions of respiratory phase and positional displacement. Using known ground truth of the patient model, images were evaluated for quantitative biomarkers of lung intensity histograms and lesion morphology metrics. RESULTS: For the physical phantom study, the Br56f kernel was shown to have the highest resolution despite having the highest noise and lowest detectability. Readers across both institutions preferred the Br56f kernel (71% first rank) with a high interclass correlation (0.990). In vivo assessments found superior detectability for PCCT compared with conventional computed tomography but higher noise and reduced detectability with increased kernel sharpness. For the virtual imaging trial, Br40f was shown to have the best performance for histogram measures, whereas Br56f was shown to have the most precise and accurate morphology metrics. CONCLUSION: The 4 evaluation methods each have their strengths and limitations and bring complementary insight to the evaluation of PCCT. Although no method offers a complete answer, concordant findings between methods offer affirmatory confidence in a decision, whereas discordant ones offer insight for added perspective. Aggregating our findings, we concluded the Br56f kernel best for high-resolution tasks and Br40f for contrast-dependent tasks.

3.
Eur Radiol ; 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938381

RESUMO

OBJECTIVE: Radiology reporting is an essential component of clinical diagnosis and decision-making. With the advent of advanced artificial intelligence (AI) models like GPT-4 (Generative Pre-trained Transformer 4), there is growing interest in evaluating their potential for optimizing or generating radiology reports. This study aimed to compare the quality and content of radiologist-generated and GPT-4 AI-generated radiology reports. METHODS: A comparative study design was employed in the study, where a total of 100 anonymized radiology reports were randomly selected and analyzed. Each report was processed by GPT-4, resulting in the generation of a corresponding AI-generated report. Quantitative and qualitative analysis techniques were utilized to assess similarities and differences between the two sets of reports. RESULTS: The AI-generated reports showed comparable quality to radiologist-generated reports in most categories. Significant differences were observed in clarity (p = 0.027), ease of understanding (p = 0.023), and structure (p = 0.050), favoring the AI-generated reports. AI-generated reports were more concise, with 34.53 fewer words and 174.22 fewer characters on average, but had greater variability in sentence length. Content similarity was high, with an average Cosine Similarity of 0.85, Sequence Matcher Similarity of 0.52, BLEU Score of 0.5008, and BERTScore F1 of 0.8775. CONCLUSION: The results of this proof-of-concept study suggest that GPT-4 can be a reliable tool for generating standardized radiology reports, offering potential benefits such as improved efficiency, better communication, and simplified data extraction and analysis. However, limitations and ethical implications must be addressed to ensure the safe and effective implementation of this technology in clinical practice. CLINICAL RELEVANCE STATEMENT: The findings of this study suggest that GPT-4 (Generative Pre-trained Transformer 4), an advanced AI model, has the potential to significantly contribute to the standardization and optimization of radiology reporting, offering improved efficiency and communication in clinical practice. KEY POINTS: • Large language model-generated radiology reports exhibited high content similarity and moderate structural resemblance to radiologist-generated reports. • Performance metrics highlighted the strong matching of word selection and order, as well as high semantic similarity between AI and radiologist-generated reports. • Large language model demonstrated potential for generating standardized radiology reports, improving efficiency and communication in clinical settings.

4.
Radiology ; 295(3): 583-590, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32255415

RESUMO

Background Identification of markers to aid in understanding the growth kinetics of Von Hippel-Lindau (VHL)-associated clear cell renal cell carcinoma (ccRCC) has the potential to allow individualization of patient care, thereby helping prevent unnecessary screening and optimizing intervention. Purpose To determine whether the degree of restricted diffusion at baseline MRI holds predictive potential for the growth rate of VHL-associated ccRCC. Materials and Methods Patients with VHL disease who underwent surgical resection of tumors between November 2014 and October 2017 were analyzed retrospectively in this HIPAA-compliant study. The change in ccRCC volume between two time points and apparent diffusion coefficient (ADC) at baseline was calculated by using segmentations by two readers at nephrographic-phase CT and diffusion-weighted MRI, respectively. Intraclass correlation coefficient was used to assess agreement between readers. Repeated-measures correlation was used to investigate relationships between ADC (histogram parameters) and tumor size at baseline with growth rate and volume doubling time (VDT). Predictive performance of the ADC parameter with highest correlation and tumor size at baseline was reviewed to differentiate tumors based on their VDT (≤1 year or >1 year). Results Forty-six patients (mean age, 46 years ± 7 [standard deviation]; 25 women) with 100 ccRCCs were evaluated. Interreader agreement resulted in mean κ scores of 0.89, 0.82, and 0.93 for mean ADC, baseline tumor volume, and follow-up tumor volume, respectively. ADC percentiles correlated negatively with tumor growth rate but correlated positively with VDT. Lower ADC values demonstrated stronger correlations. The 25th percentile ADC had the strongest correlation with growth rate (ρ = -0.52, P < .001) and VDT (ρ = 0.60, P < .001) and enabled prediction of VDT (≤1 year or >1 year) with an area under the receiver operating characteristic curve of 0.86 (sensitivity, 67%; specificity, 89%) (P < .001). Conclusion Apparent diffusion coefficient at baseline was negatively correlated with tumor growth rate. Diffusion-weighted MRI may be useful to identify clear cell renal cell carcinomas with higher growth rates. © RSNA, 2020See also the editorial by Goh and Prezzi in this issue.


Assuntos
Carcinoma de Células Renais/diagnóstico por imagem , Proliferação de Células/fisiologia , Imagem de Difusão por Ressonância Magnética , Neoplasias Renais/diagnóstico por imagem , Doença de von Hippel-Lindau/diagnóstico por imagem , Adulto , Correlação de Dados , Feminino , Humanos , Cinética , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Tomografia Computadorizada por Raios X
5.
Pediatr Radiol ; 49(6): 784-790, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30859244

RESUMO

BACKGROUND: Peritoneal free fluid can indicate an underlying disease process; however detection of minimal peritoneal free fluid in healthy children is not uncommon. OBJECTIVE: To assess the significance of incidental peritoneal free fluid within healthy children by MRI and its relation to physiological changes during puberty. MATERIALS AND METHODS: This prospective study was performed on 32 healthy volunteers (20 boys) between the ages of 8 years and 13 years, with consecutive follow-ups every 8-10 months for an average of 3 years. Body mass index (BMI) z-score, pubertal status, C-reactive protein and sex hormone concentrations were assessed prior to MRI studies. We reviewed a total of 120 pelvic MRI studies (61 boys) and measured the quantity of peritoneal free fluid. For statistical analysis we used linear mixed-model accounting for within-patient correlations. RESULTS: The mean ± standard deviation volume of peritoneal free fluid was 4.7±5.7 mL in girls and 1.9±3.1 mL in boys, with a maximum volume of 25 mL and 17 mL, respectively. The prevalence of peritoneal free fluid was significantly higher in girls (91%) compared to boys (67%; P=0.0035). In 15% of the girls and 3% of the boys the fluid was greater than 10 mL. The mean volume of peritoneal free fluid in the fourth stage of puberty was higher and significantly different from the mean volume in the first stage of puberty (P=0.01). CONCLUSION: Among healthy pubescent children, the prevalence of peritoneal free fluid is significantly higher in girls. The volume of peritoneal free fluid can reach volumes greater than 10 mL during normal puberty, especially in the fourth stage, and can be assumed normal in the absence of active disease.


Assuntos
Líquido Ascítico , Imageamento por Ressonância Magnética/métodos , Peritônio/diagnóstico por imagem , Puberdade , Adolescente , Criança , Feminino , Humanos , Achados Incidentais , Masculino , Estudos Prospectivos
7.
Phys Med Biol ; 69(14)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38942009

RESUMO

Objective.With the introduction of spectral CT techniques into the clinic, the imaging capacities of CT were expanded to multiple energy levels. Due to a variety of factors, the acquired signal in spectral CT datasets is shared between these images. Conventional image quality metrics assume independence between images which is not preserved within spectral CT datasets, limiting their utility for characterizing energy selective images. The purpose of this work was to develop a metrology to characterize energy selective images by incorporating the shared information between images within a spectral CT dataset.Approach.The signal-to-noise ratio (SNR) was extended into a multivariate space where each image within a spectral CT dataset was treated as a separate information channel. The general definition was applied to the specific case of contrast to define a multivariate contrast-to-noise ratio (CNR). The matrix contained two types of terms: a conventional CNR term which characterized image quality within each image in the spectral CT dataset and covariance weighted CNR (Covar-CNR) which characterized the contrast in each image relative to the covariance between images. Experimental data from an investigational photon-counting CT scanner was used to demonstrate the insight of this metrology. A cylindrical water phantom containing vials of iodine and gadolinium (2, 4, and 8 mg ml-1) was imaged under conditions of variable tube current, tube voltage, and energy threshold. Two image series (threshold and bin images) containing two images each were defined based upon the contribution of photons to reconstructed images. Analysis of variance (ANOVA) was calculated between CNR terms and image acquisition variables. A multivariate regression was then fitted to experimental data.Main Results.Image type had a major difference on how Covar-CNR values were distributed. Bin images had a slightly higher mean and wider standard deviation (Covar-CNRlo: 3.38 ±17.25, Covar-CNRhi: 5.77 ± 30.64) compared to threshold images (Covar-CNRlo: 2.08 ±1.89, Covar-CNRhi: 3.45 ± 2.49) across all conditions. ANOVA found that each acquisition variable had a significant relationship with both Covar-CNR terms. The multivariate regression model suggested that material concentration had the largest impact on all CNR terms.Signficance.In this work, we described a theoretical framework to extend the SNR to a multivariate form that is able to characterize images independently and also provide insight regarding the relationship between images. Experimental data was used to demonstrate the insight that this metrology provides about image formation factors in spectral CT.


Assuntos
Razão Sinal-Ruído , Tomografia Computadorizada por Raios X , Tomografia Computadorizada por Raios X/métodos , Análise Multivariada , Imagens de Fantasmas , Processamento de Imagem Assistida por Computador/métodos
8.
Phys Med ; 122: 103382, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38820805

RESUMO

PURPOSE: In this work, we define a signal detection based metrology to characterize the separability of two different multi-dimensional signals in spectral CT acquisitions. METHOD: Signal response was modelled as a random process with a deterministic signal and stochastic noise component. A linear Hotelling observer was used to estimate a scalar test statistic distribution that predicts the likelihood of an intensity value belonging to a signal. Two distributions were estimated for two materials of interest and used to derive two metrics separability: a separability index (s') and the area under the curve of the test statistic distributions. Experimental and simulated data of photon-counting CT scanners were used to evaluate each metric. Experimentally, vials of iodine and gadolinium (2, 4, 8 mg/mL) were scanned at multiple tube voltages, tube currents and energy thresholds. Additionally, a simulated dataset with low tube current (10-150 mAs) and material concentrations (0.25-4 mg/mL) was generated. RESULTS: Experimental data showed that conditions favorable for low noise and expression of k-edge signal produced the highest separability. Material concentration had the greatest impact on separability. The simulated data showed that under more difficult separation conditions, difference in material concentration still had the greatest impact on separability. CONCLUSION: The results demonstrate the utility of a task specific metrology to measure the overlap in signal between different materials in spectral CT. Using experimental and simulated data, the separability index was shown to describe the relationship between image formation factors and the signal responses of material.


Assuntos
Tomografia Computadorizada por Raios X , Iodo , Razão Sinal-Ruído , Processamento de Imagem Assistida por Computador/métodos , Gadolínio/química , Imagens de Fantasmas
9.
Clin Imaging ; 106: 110067, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128404

RESUMO

OBJECTIVE: The aim of this study was to characterize the distribution of skeletal involvement in Erdheim-Chester disease (ECD) by using radiography, computed tomography (CT), 18F-FDG positron emission tomography/computed tomography (PET/CT), and bone scans, as well as looking for associations with the BRAFV600E mutation. MATERIAL AND METHODS: Prospective study of 50 consecutive patients with biopsy-confirmed ECD who had radiographs, CT, 18F-FDG PET/CT, and Tc-99m MDP bone scans. At least two experienced radiologists with expertise in the relevant imaging studies analyzed the images. Summary statistics were expressed as the frequency with percentages for categorical data. Fisher's exact test, as well as odds ratios (OR) with 95 % confidence intervals (CI), were used to link imaging findings to BRAFV600E mutation. The probability for co-occurrence of bone involvement at different locations was calculated and graphed as a heat map. RESULTS: All 50 cases revealed skeletal involvement at different regions of the skeleton. The BRAFV600E mutation, which was found in 24 patients, was correlated with femoral and tibial involvement on 18F-FDG PET/CT and bone scan. The appearance of changes on the femoral, tibial, fibular, and humeral involvement showed correlation with each other based on heat maps of skeletal involvement on CT. CONCLUSION: This study reports the distribution of skeletal involvement in a cohort of patients with ECD. CT is able to detect the majority of ECD skeletal involvement. Considering the complementary nature of information from different modalities, imaging of ECD skeletal involvement is optimized by using a multi-modality strategy.


Assuntos
Doença de Erdheim-Chester , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Doença de Erdheim-Chester/diagnóstico por imagem , Doença de Erdheim-Chester/genética , Fluordesoxiglucose F18 , Imagem Multimodal , Mutação , Estudos Prospectivos , Proteínas Proto-Oncogênicas B-raf/genética
10.
Semin Nucl Med ; 53(3): 426-448, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36870800

RESUMO

Our review shows that AI-based analysis of lymphoma whole-body FDG-PET/CT can inform all phases of clinical management including staging, prognostication, treatment planning, and treatment response evaluation. We highlight advancements in the role of neural networks for performing automated image segmentation to calculate PET-based imaging biomarkers such as the total metabolic tumor volume (TMTV). AI-based image segmentation methods are at levels where they can be semi-automatically implemented with minimal human inputs and nearing the level of a second-opinion radiologist. Advances in automated segmentation methods are particularly apparent in the discrimination of lymphomatous vs non-lymphomatous FDG-avid regions, which carries through to automated staging. Automated TMTV calculators, in addition to automated calculation of measures such as Dmax are informing robust models of progression-free survival which can then feed into improved treatment planning.


Assuntos
Linfoma , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Inteligência Artificial , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons , Linfoma/diagnóstico por imagem , Linfoma/terapia
11.
PET Clin ; 18(1): 1-20, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36442958

RESUMO

Osteoporosis is a metabolic bone disorder that leads to a decline in bone microarchitecture, predisposing individuals to catastrophic fractures. The current standard of care relies on detecting bone structural change; however, these methods largely miss the complex biologic forces that drive these structural changes and response to treatment. This review introduces sodium fluoride (18F-NaF) positron emission tomography/computed tomography (PET/CT) as a powerful tool to quantify bone metabolism. Here, we discuss the methods of 18F-NaF PET/CT, with a special focus on dynamic scans to quantify parameters relevant to bone health, and how these markers are relevant to osteoporosis.


Assuntos
Fraturas Ósseas , Osteoporose , Humanos , Fluoreto de Sódio , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia Computadorizada por Raios X , Osteoporose/diagnóstico por imagem
12.
PET Clin ; 18(1): 135-148, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36442961

RESUMO

Time provides a common frame of reference for understanding different processes of change. Within the context of medical imaging, time has three different time scales to be considered: (i) microtime, (ii) mesotime, and (iii) macrotime, respectively, which span a single imaging session, distinct imaging sessions within a short period, and scans with large time gaps spanning months of even years. There has commonly been greater emphasis on the microtime and mesotime scales in both clinical practice and research, with less focus on questions that are at the macrotime scale.


Assuntos
Medicina Nuclear , Humanos , Cintilografia
13.
Phys Med ; 114: 102683, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37738807

RESUMO

PURPOSE: Photon-counting CT (PCCT) has higher spatial resolution that conventional EID CT which improves imaging of stationary coronary plaques and stents.. In this work, we evaluated the relationship between higher spatial resolution and motion acquisition on an investigational PCCT system. METHODS: An investigational photon-counting CT scanner (Siemens CounT) with ECG gating was used to image a coronary tree phantom with models of healthy, stenotic, and stented arteries using a motion simulator. Images were acquired with matched clinical parameters at rest and 60 beats per minute. An additional set of high dose stationary images were averaged to generate a motion-free, reduced noise reference. Scans were completed at standard (0.5 mm2) and high-resolution (0.25 mm2). Motion images were reconstructed at multiple phases. Regions of interest were drawn around vessels and segmented. Percentage difference from the reference standard was evaluated for vessel diameter and circularity. Mutual information between the reference and stationary and motion datasets was used as a measure of volumetric similarity. RESULTS: The stenotic vessel showed the most variation from the reference when compared to healthy or stented vessels. Compared to standard resolution, high-resolution images had lower bias for diameter (-0.012 ± 0.19% vs -0.052 ± 0.14%) and lower variability for circularity (-0.13 ± 0.138% vs -0.12 ± 0.144%). Both differences were found to be statistically significant. High-resolution images had a slightly lower mutual information (1.28) than standard resolution (1.31). CONCLUSION: The higher spatial resolution enabled by photon-counting CT can be harnessed for cardiac imaging as the benefits of high spatial resolution acquisitions remain relevant in the presence of motion.


Assuntos
Coração , Tomografia Computadorizada por Raios X , Tomografia Computadorizada por Raios X/métodos , Imagens de Fantasmas , Coração/diagnóstico por imagem , Movimento (Física) , Fótons , Eletrocardiografia
14.
Clin Imaging ; 102: 109-115, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37672849

RESUMO

PURPOSE: Advantages of virtual monoenergetic images (VMI) have been reported for dual energy CT of the head and neck, and more recently VMIs derived from photon-counting (PCCT) angiography of the head and neck. We report image quality metrics of VMI in a PCCT angiography dataset, expanding the anatomical regions evaluated and extending observer-based qualitative methods further than previously reported. METHODS: In a prospective study, asymptomatic subjects underwent contrast enhanced PCCT of the head and neck using an investigational scanner. Image sets of low, high, and full spectrum (Threshold-1) energies; linear mix of low and high energies (Mix); and 23 VMIs (40-150 keV, 5 keV increments) were generated. In 8 anatomical locations, SNR and radiologists' preferences for VMI energy levels were measured using a forced-choice rank method (4 observers) and ratings of image quality using visual grading characteristic (VGC) analysis (2 observers) comparing VMI to Mix and Threshold-1 images. RESULTS: Fifteen subjects were included (7 men, 8 women, mean 57 years, range 46-75). Among all VMIs, SNRs varied by anatomic location. The highest SNRs were observed in VMIs. Radiologists preferred 50-60 keV VMIs for vascular structures and 75-85 keV for all other structures. Cumulative ratings of image quality averaged across all locations were higher for VMIs with areas under the curve of VMI vs Mix and VMI vs Threshold-1 of 0.67 and 0.68 for the first reader and 0.72 and 0.76 for the second, respectively. CONCLUSION: Preferred keV level and quality ratings of VMI compared to mixed and Threshold-1 images varied by anatomical location.


Assuntos
Cabeça , Pescoço , Masculino , Feminino , Humanos , Estudos Prospectivos , Cabeça/diagnóstico por imagem , Pescoço/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Angiografia
15.
PET Clin ; 17(1): 115-135, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34809861

RESUMO

This review discusses the current state of artificial intelligence (AI) in 18F-NaF-PET/CT imaging and the potential applications to come in diagnosis, prognostication, and improvement of care in patients with bone diseases, with emphasis on the role of AI algorithms in CT bone segmentation, relying on their prevalence in medical imaging and utility in the extraction of spatial information in combined PET/CT studies.


Assuntos
Doenças Ósseas , Fluoreto de Sódio , Inteligência Artificial , Radioisótopos de Flúor , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos
16.
PET Clin ; 17(1): 145-174, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34809864

RESUMO

Malignant lymphomas are a family of heterogenous disorders caused by clonal proliferation of lymphocytes. 18F-FDG-PET has proven to provide essential information for accurate quantification of disease burden, treatment response evaluation, and prognostication. However, manual delineation of hypermetabolic lesions is often a time-consuming and impractical task. Applications of artificial intelligence (AI) may provide solutions to overcome this challenge. Beyond segmentation and detection of lesions, AI could enhance tumor characterization and heterogeneity quantification, as well as treatment response prediction and recurrence risk stratification. In this scoping review, we have systematically mapped and discussed the current applications of AI (such as detection, classification, segmentation as well as the prediction and prognostication) in lymphoma PET.


Assuntos
Inteligência Artificial , Linfoma , Fluordesoxiglucose F18 , Humanos , Linfoma/diagnóstico por imagem
17.
Front Med Technol ; 4: 995526, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36590152

RESUMO

The practice of medicine is rapidly transforming as a result of technological breakthroughs. Artificial intelligence (AI) systems are becoming more and more relevant in medicine and orthopaedic surgery as a result of the nearly exponential growth in computer processing power, cloud based computing, and development, and refining of medical-task specific software algorithms. Because of the extensive role of technologies such as medical imaging that bring high sensitivity, specificity, and positive/negative prognostic value to management of orthopaedic disorders, the field is particularly ripe for the application of machine-based integration of imaging studies, among other applications. Through this review, we seek to promote awareness in the orthopaedics community of the current accomplishments and projected uses of AI and ML as described in the literature. We summarize the current state of the art in the use of ML and AI in five key orthopaedic disciplines: joint reconstruction, spine, orthopaedic oncology, trauma, and sports medicine.

18.
PET Clin ; 17(1): 13-29, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34809862

RESUMO

Almost 1 in 10 individuals can suffer from one of many rare diseases (RDs). The average time to diagnosis for an RD patient is as high as 7 years. Artificial intelligence (AI)-based positron emission tomography (PET), if implemented appropriately, has tremendous potential to advance the diagnosis of RDs. Patient advocacy groups must be active stakeholders in the AI ecosystem if we are to avoid potential issues related to the implementation of AI into health care. AI medical devices must not only be RD-aware at each stage of their conceptualization and life cycle but also should be trained on diverse and augmented datasets representative of the end-user population including RDs. Inability to do so leads to potential harm and unsustainable deployment of AI-based medical devices (AIMDs) into clinical practice.


Assuntos
Inteligência Artificial , Doenças Raras , Ecossistema , Humanos , Tomografia por Emissão de Pósitrons , Radiografia , Doenças Raras/diagnóstico por imagem
19.
Acad Radiol ; 28(12): 1754-1760, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-32855051

RESUMO

RATIONALE AND OBJECTIVES: The purpose of this study was to investigate the potential of photon-counting CT (PCCT) to improve quantitative image quality for low dose imaging compared to energy-integrating detector CT (EID CT). MATERIALS AND METHODS: An investigational scanner (Siemens, Germany) with PCCT and EID CT subsystems was used to compare image quality performance at four dose levels: 1.7, 2, 4, 6 mGy CTDIvol, all at or below current dose values used for conventional abdominal CT. A CT quality control phantom with a homogeneous section for noise measurements and a section with cylindrical inserts of air (-910 HU), polystyrene (50 HU), acrylic (205 HU), and Teflon (1000 HU) was imaged and characterized in terms of noise, resolution, contrast-to-noise ratio (CNR), and detectability index. A second phantom with a 30 cm diameter was also imaged containing iodine solutions ranging from 0.125 to 8 mg I/mL. CNR of the iodine vials was computed as a function of CT dose and iodine concentration. RESULTS: With resolution unaffected by dose in both PCCT and EID CT, PCCT images exhibited 22.1-24.0% improvement in noise across dose levels evaluated. This noise improvement translated into a 29-41% improvement in CNR and 20-36% improvement in detectability index. For iodine contrast, PCCT images had a higher CNR for all combinations of iodine contrast and dose evaluated. CONCLUSION: For the conditions studied, PCCT exhibited superior image quality compared to EID CT. For iodine detection, PCCT offered a notable advantage with improved CNR at all doses and iodine concentration levels.


Assuntos
Iodo , Tomografia Computadorizada por Raios X , Alemanha , Humanos , Imagens de Fantasmas , Fótons
20.
Radiol Imaging Cancer ; 3(3): e200090, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33874734

RESUMO

Purpose To compare Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1 with volumetric measurement in the setting of target lymph nodes that split into two or more nodes or merge into one conglomerate node. Materials and Methods In this retrospective study, target lymph nodes were evaluated on CT scans from 166 patients with different types of cancer; 158 of the scans came from The Cancer Imaging Archive. Each target node was measured using RECIST 1.1 criteria before and after merging or splitting, followed by volumetric segmentation. To compare RECIST 1.1 with volume, a single-dimension hypothetical diameter (HD) was determined from the nodal volume. The nodes were divided into three groups: (a) one-target merged (one target node merged with other nodes); (b) two-target merged (two neighboring target nodes merged); and (c) split node (a conglomerate node cleaved into smaller fragments). Bland-Altman analysis and t test were applied to compare RECIST 1.1 with HD. On the basis of the RECIST 1.1 concept, we compared response category changes between RECIST 1.1 and HD. Results The data set consisted of 30 merged nodes (19 one-target merged and 11 two-target merged) and 20 split nodes (mean age for all 50 included patients, 50 years ± 7 [standard deviation]; 38 men). RECIST 1.1, volumetric, and HD measurements indicated an increase in size in all one-target merged nodes. While volume and HD indicated an increase in size for nodes in the two-target merged group, RECIST 1.1 showed a decrease in size in all two-target merged nodes. Although volume and HD demonstrated a decrease in size of all split nodes, RECIST 1.1 indicated an increase in size in 60% (12 of 20) of the nodes. Discrepancy of the response categories between RECIST 1.1 and HD was observed in 5% (one of 19) in one-target merged, 82% (nine of 11) in two-target merged, and 55% (11 of 20) in split nodes. Conclusion RECIST 1.1 does not optimally reflect size changes when lymph nodes merge or split. Keywords: CT, Lymphatic, Tumor Response Supplemental material is available for this article. © RSNA, 2021.


Assuntos
Linfonodos , Neoplasias , Humanos , Linfonodos/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Neoplasias/diagnóstico por imagem , Critérios de Avaliação de Resposta em Tumores Sólidos , Estudos Retrospectivos , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA