RESUMO
Casein-kinase CK2 is a Ser/Thr protein kinase that fosters cell survival and proliferation of malignant cells. The CK2 holoenzyme, formed by the association of two catalytic alpha/alpha' (CK2α/CK2α') and two regulatory beta subunits (CK2ß), phosphorylates diverse intracellular proteins partaking in key cellular processes. A handful of such CK2 substrates have been identified as targets for the substrate-binding anticancer peptide CIGB-300. However, since CK2ß also contains a CK2 phosphorylation consensus motif, this peptide may also directly impinge on CK2 enzymatic activity, thus globally modifying the CK2-dependent phosphoproteome. To address such a possibility, firstly, we evaluated the potential interaction of CIGB-300 with CK2 subunits, both in cell-free assays and cellular lysates, as well as its effect on CK2 enzymatic activity. Then, we performed a phosphoproteomic survey focusing on early inhibitory events triggered by CIGB-300 and identified those CK2 substrates significantly inhibited along with disturbed cellular processes. Altogether, we provided here the first evidence for a direct impairment of CK2 enzymatic activity by CIGB-300. Of note, both CK2-mediated inhibitory mechanisms of this anticancer peptide (i.e., substrate- and enzyme-binding mechanism) may run in parallel in tumor cells and help to explain the different anti-neoplastic effects exerted by CIGB-300 in preclinical cancer models.
Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Caseína Quinase II/metabolismo , Neoplasias Pulmonares/metabolismo , Peptídeos Cíclicos/farmacologia , Domínio Catalítico , Linhagem Celular Tumoral , Sistema Livre de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Microscopia de Fluorescência , Fosforilação , Ligação Proteica , Proteoma , Proteínas Recombinantes/metabolismoRESUMO
BACKGROUND: Lung cancer is the most frequently diagnosed cancer and the leading cause of cancer-related deaths worldwide. Up to 80% of cancer patients are classified as non-small-cell lung cancer (NSCLC) and cisplatin remains as the gold standard chemotherapy treatment, despite its limited efficacy due to both intrinsic and acquired resistance. The CK2 is a Ser/Thr kinase overexpressed in various types of cancer, including lung cancer. CIGB-300 is an antitumor peptide with a novel mechanism of action, since it binds to CK2 substrates thus preventing the enzyme activity. The aim of this work was to analyze the effects of CIGB-300 treatment targeting CK2-dependent signaling pathways in NSCLC cell lines and whether it may help improve current chemotherapy treatment. METHODS: The human NSCLC cell lines NCI-H125 and NIH-A549 were used. Tumor spheroids were obtained through the hanging-drop method. A cisplatin resistant A549 cell line was obtained by chronic administration of cisplatin. Cell viability, apoptosis, immunoblotting, immunofluorescence and luciferase reporter assays were used to assess CIGB-300 effects. A luminescent assay was used to monitor proteasome activity. RESULTS: We demonstrated that CIGB-300 induces an anti-proliferative response both in monolayer- and three-dimensional NSCLC models, presenting rapid and complete peptide uptake. This effect was accompanied by the inhibition of the CK2-dependent canonical NF-κB pathway, evidenced by reduced RelA/p65 nuclear levels and NF-κB protein targets modulation in both lung cancer cell lines, as well as conditionally reduced NF-κB transcriptional activity. In addition, NF-κB modulation was associated with enhanced proteasome activity, possibly through its α7/C8 subunit. Neither the peptide nor a classical CK2 inhibitor affected cytoplasmic ß-CATENIN basal levels. Given that NF-κB activation has been linked to cisplatin-induced resistance, we explored whether CIGB-300 could bring additional therapeutic benefits to the standard cisplatin treatment. We established a resistant cell line that showed higher p65 nuclear levels after cisplatin treatment as compared with the parental cell line. Remarkably, the cisplatin-resistant cell line became more sensitive to CIGB-300 treatment. CONCLUSIONS: Our data provide new insights into CIGB-300 mechanism of action and suggest clinical potential on current NSCLC therapy.
RESUMO
Peptide active ingredients show great promise regarding the treatment of various health-endangering diseases. It is reported that L-lysine inhibits the proliferation of several tumour lines in vitro and in vivo. However, proteins and peptide drugs possess certain disadvantages such as in vivo instability and short biological half-life. On the grounds that drug delivery systems can overcome a wide spectrum of bioactive compounds issues, a biopolymeric blend-based microparticulated system capable of delivering ε-polylysine (PLL) was developed. PLL-loaded poly((L)Lactic acid)/poly(D,L-Lactide)-co-poly(ethylene glycol)-based microparticles (PLL-PB-MPs) were prepared and fully characterised exhibiting a narrow size distribution (1.2 ± 0.12 µm), high loading efficiency (81%) and improved thermal stability (Td from 250 °C to 291 °C). The cytotoxicity and antiproliferative effect of PLL-PB-MPs in pancreatic adenocarcinoma cell lines BxPC3 and MIA PaCa-2 were confirmed. Due to their physicochemical and biopharmaceutical properties, PB-MPs constitute a promising carrier to deliver bioactive peptides.
Assuntos
Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos , Neoplasias Pancreáticas/tratamento farmacológico , Polilisina/química , Linhagem Celular Tumoral , Humanos , Polímeros/químicaRESUMO
CIGB-300 is a cyclic synthetic peptide that induces apoptosis in malignant cells, elicits antitumor activity in cancer animal models, and shows tumor reduction signs when assayed in first-in-human phase I trial in patients with cervical tumors. CIGB-300 impairs phosphorylation by casein kinase 2 through targeting the substrate's phosphoacceptor domain. CIGB-300 was linked to the cell penetrating peptide Tat to facilitate the delivery into cells. Previously, we showed that CIGB-300 had a differential antiproliferative behavior in different tumor cell lines. In this work, we studied differential antiproliferative behavior in terms of cellular uptake, intracellular transportation, and degradation in tumor cell lines with dissimilar sensitivity to CIGB-300. The internalization of CIGB-300 was studied in different malignant cell lines. We found that the cell membrane heparan sulfate proteoglycans act as main receptors for extracellular CIGB-300 uptake. The most sensitive tumor cell lines showed higher intracellular incorporation of CIGB-300 in comparison to less sensitive cell lines. Furthermore, CIGB-300 uptake is time- and concentration-dependent in all studied cell lines. It was shown that CIGB-300 has the ability to penetrate cells mainly by direct membrane translocation. However, a minor proportion of the peptide uses an energy-dependent endocytic pathway mechanism to gain access into cells. CIGB-300 is internalized and transported into cells preferentially by caveolae-mediated endocytosis. Lysosomes are involved in CIGB-300 degradation; highly sensitive cell lines showed degradation at earlier times compared to low sensitive cells. Altogether, our data suggests a mechanism of internalization, vesicular transportation, and degradation for CIGB-300 in tumor cells.
Assuntos
Transporte Biológico/fisiologia , Peptídeos Cíclicos/metabolismo , Peptídeos/metabolismo , Cavéolas/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Endocitose/fisiologia , Células HL-60 , Células HeLa , Proteoglicanas de Heparan Sulfato/metabolismo , Humanos , Lisossomos/metabolismoRESUMO
Telomerase is the enzyme responsible for the maintenance of telomere length by adding guanine-rich repetitive sequences. Its activity can be seen in gametes, stem cells and tumor cells. In human somatic cells the proliferative potential is limited, reaching senescence after 50-70 cell divisions, because the DNA polymerase is not able to copy the DNA at the ends of chromosomes. By contrast, in most tumor cells the replicative potential is unlimited due to the maintenance of the telomeric length given by telomerase. Telomeres have additional proteins that regulate the binding of telomerase, likewise telomerase associates, with a protein complex that regulates its activity. This work focuses on the structure and function of the telomere/telomerase complex and how changes in its behavior lead to the development of different diseases, mainly cancer. Development of inhibitors of the telomere/telomerase complex could be a target with promising possibilities.
Assuntos
Neoplasias/genética , Telomerase/genética , Telômero/fisiologia , Animais , Divisão Celular/fisiologia , Senescência Celular/genética , Humanos , Neoplasias/enzimologia , Telomerase/metabolismo , Proteína 1 de Ligação a Repetições Teloméricas/fisiologia , Proteína 2 de Ligação a Repetições Teloméricas/fisiologiaRESUMO
Desmopressin (DDAVP), a synthetic peptide analog of vasopressin, is a safe antidiuretic and hemostatic compound that acts as a selective agonist for the vasopressin V2 membrane receptor. It is known that DDAVP can inhibit progression of residual metastatic cells and also improves chemotherapy effects in preclinical breast cancer models. Here, we explored the effects of DDAVP on tumor angiogenesis using the aggressive F3II mammary carcinoma in syngeneic Balb/c mice. Intravenous administration of the compound (2 µg/kg) markedly decreased vascularization of growing subcutaneous tumors, as well as inhibited the early angiogenic response around intradermal inoculation sites. In vitro studies confirmed the presence of vasopressin V2 receptors on F3II cells and a modest antiproliferative activity of DDAVP. Interestingly, conditioned media from F3II monolayers exposed to low doses of DDAVP (100 nM) significantly increased angiostatin formation in the presence of purified plasminogen. Such increase was associated with an enhancement of tumor-secreted urokinase-type plasminogen activator, suggesting the proteolytic conversion of plasminogen to angiostatin in vitro. Similar results were observed with the MCF-7 human breast carcinoma, a cell line known to express the vasopressin V2 receptor. No direct effects of DDAVP (100 nM1 µM) were found on capillary-like tube formation by human microvascular cells HMVEC. Our studies showed that DDAVP induces anti-angiogenic effects that may be associated with the generation of angiostatin by tumor cells. Further preclinical studies with DDAVP and other vasopressin analogs are warranted to determine their potential in cancer management.
Assuntos
Inibidores da Angiogênese/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Desamino Arginina Vasopressina/farmacologia , Neovascularização Patológica/tratamento farmacológico , Inibidores da Angiogênese/administração & dosagem , Angiostatinas/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desamino Arginina Vasopressina/administração & dosagem , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Feminino , Humanos , Camundongos , Proteólise/efeitos dos fármacos , Receptores de Vasopressinas/metabolismo , Carga Tumoral/efeitos dos fármacosRESUMO
CIGB-300 is a novel anticancer peptide that impairs the casein kinase 2-mediated phosphorylation by direct binding to the conserved phosphoacceptor site on their substrates. Previous findings indicated that CIGB-300 inhibits tumor cell proliferation in vitro and induces tumor growth delay in vivo in cancer animal models. Interestingly, we had previously demonstrated that the putative oncogene B23/nucleophosmin (NPM) is the major intracellular target for CIGB-300 in a sensitive human lung cancer cell line. However, the ability of this peptide to target B23/NPM in cancer cells with differential CIGB-300 response phenotype remained to be determined. Interestingly, in this work, we evidenced that CIGB-300's antiproliferative activity on tumor cells strongly correlates with its nucleolar localization, the main subcellular localization of the previously identified B23/NPM target. Likewise, using CIGB-300 equipotent doses (concentration that inhibits 50% of proliferation), we demonstrated that this peptide interacts and inhibits B23/NPM phosphorylation in different cancer cell lines as evidenced by in vivo pull-down and metabolic labeling experiments. Moreover, such inhibition was followed by a fast apoptosis on CIGB-300-treated cells and also an impairment of cell cycle progression mainly after 5 h of treatment. Altogether, our data not only validates B23/NPM as a main target for CIGB-300 in cancer cells but also provides the first experimental clues to explain their differential antiproliferative response. Importantly, our findings suggest that further improvements to this cell penetrating peptide-based drug should entail its more efficient intracellular delivery at such subcellular localization.
Assuntos
Antineoplásicos/farmacologia , Nucléolo Celular/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , Antineoplásicos/metabolismo , Apoptose , Caseína Quinase II/antagonistas & inibidores , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Proteínas Nucleares/metabolismo , Nucleofosmina , Peptídeos Cíclicos/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional/efeitos dos fármacosRESUMO
We have previously demonstrated that a proapoptotic cyclic peptide CIGB-300, formerly known as P15-Tat delivered into the cells by the cell-penetrating peptide Tat, was able to abrogate the CK2-mediated phosphorylation and induce tumor regression when injected directly into solid tumors in mice or by systemic administration. In this work, we studied the role of CIGB-300 on the main events that take place in angiogenesis. At non-cytotoxic doses, CIGB-300 was able to inhibit adhesion, migration, and tubular network formation induced by human umbilical vein endothelial cells (HUVEC) growing upon Matrigel in vitro. Likewise, we evaluated the cellular penetration and localization into the HUVEC cells of CIGB-300. Our results confirmed a quick cellular penetration and a cytoplasmic accumulation in the early minutes of incubation and a translocation into the nuclei beginning at 12h of treatment, with a strong presence in the perinuclear area. A microarray analysis was used to determine the genes affected by the treatment. We observed that CIGB-300 significantly decreased four genes strongly associated with tubulogenesis, growth, and differentiation of endothelial cells. The CIGB-300 was tested in vivo on chicken embryo chorioallantoic membranes (CAM), and a large number of newly formed blood vessels were significantly regressed. The results suggested that CIGB-300 has a potential as an antiangiogenic treatment. The mechanism of action may be associated with partial inhibition of VEGF and Notch pathways.
Assuntos
Inibidores da Angiogênese/farmacologia , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Neovascularização Patológica/prevenção & controle , Peptídeos Cíclicos/farmacologia , Animais , Biomarcadores/metabolismo , Western Blotting , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Embrião de Galinha , Membrana Corioalantoide/efeitos dos fármacos , Membrana Corioalantoide/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Perfilação da Expressão Gênica , Humanos , Técnicas In Vitro , Análise de Sequência com Séries de Oligonucleotídeos , Veias Umbilicais/citologia , Veias Umbilicais/efeitos dos fármacos , Veias Umbilicais/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Background: SARS-CoV-2 infection is associated with a wide range of clinical manifestations and severity. Pediatric cases represent <10% of total cases, with a mortality rate below 1%. Data of correlation between SARS-CoV-2 viral load in respiratory samples and severity of disease in pediatric patients is scarce. The cycle threshold (CT) value for the detection of SARS-CoV-2 could be used as an indirect indicator of viral load in analyzed respiratory samples. Objective: The aim of this study was to describe CT values and their correlation with clinical manifestations, epidemiology and laboratory parameters in pediatric patients with confirmed COVID-19. Methods: In this observational, retrospective, analytic and single-center study we included patients under 15 years with confirmed COVID-19 by RT-PCR SARS-CoV-2 admitted to the Isidoro Iriarte Hospital (Argentina) between March 1st 2020 and April 30th 2021. Results: 485 patients were included, the distribution according to disease severity was: 84% (408 patients) presented mild disease, 12% (59 patients) moderate disease and 4% (18 patients) severe disease. Patients with moderate and severe illness had an increased hospitalization rate, prolonged hospitalization, higher frequency of comorbidities and oxygen and antibiotics use. CT values, that could be used as an indirect measure of viral load, was associated with severity of clinical manifestations and age under 12 months. No patient required admission to PICU nor mechanical ventilation. No deaths were registered. Conclusions: In this study, the viral load of SARS-CoV-2 in respiratory samples, determined by the cycle threshold, was significantly correlated with moderate to severe cases and with age.
RESUMO
PURPOSE: The aim of the present work was to investigate the role of apoptosis inhibitor BIRC6 (baculoviral IAP repeat-containing protein 6) in breast cancer (BC), focusing particularly on its involvement in the metastatic cascade. METHODS: We analyzed BIRC6 mRNA expression levels and copy number variations in three BC databases from The Cancer Genome Atlas comparing clinical and molecular attributes. Genomic analysis was performed using the cBioPortal platform, whereas transcriptomic studies (mRNA expression levels, correlation heatmaps, survival plots, and gene ontology) were performed using USC Xena and R. Statistical significance was set at P < .05. RESULTS: Our bioinformatic analyses showed that there was a differential expression of BIRC6 in cancer samples when compared with normal samples. Copy number variations that involve amplification and gain of BIRC6 gene were correlated with negative hormone receptor tumors, higher prognostic indexes, younger age at diagnosis, and both chemotherapy and radiotherapy administration. Transcriptomic and gene ontology analyses showed that, under conditions of high BIRC6 mRNA levels, there are differential expression patterns in apoptotic, proliferation, and metastatic pathways. CONCLUSION: In summary, our in silico data suggest that BIRC6 plays an antiapoptotic, pro-proliferative, and apparent prometastatic role and could be a relevant molecular target for treatment of BC tumors.
Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Variações do Número de Cópias de DNA , Apoptose/genética , Bases de Dados Factuais , RNA Mensageiro/genética , Proteínas Inibidoras de Apoptose/genéticaRESUMO
CK2 represents an oncology target scientifically validated. However, clinical research with inhibitors of the CK2-mediated phosphorylation event is still insufficient to recognize it as a clinically validated target. CIGB-300, an investigational peptide-based drug that targets the phosphoaceptor site, binds to a CK2 substrate array in vitro but mainly to B23/nucleophosmin in vivo. The CIGB-300 proapoptotic effect is preceded by its nucleolar localization, inhibition of the CK2-mediated phosphorylation on B23/nucleophosmin and nucleolar disassembly. Importantly, CIGB-300 shifted a protein array linked to apoptosis, ribosome biogenesis, cell proliferation, glycolisis, and cell motility in proteomic studies which helped to understand its mechanism of action. In the clinical ground, CIGB-300 has proved to be safe and well tolerated in a First-in-Human trial in women with cervical malignancies who also experienced signs of clinical benefit. In a second Phase 1 clinical trial in women with cervical cancer stage IB2/II, the MTD and DLT have been also identified in the clinical setting. Interestingly, in cervical tumors the B23/nucleophosmin protein levels were significantly reduced after CIGB-300 treatment at the nucleus compartment. In addition, expanded use of CIGB-300 in case studies has evidenced antitumor activity when administered as compassional option. Collectively, our data outline important clues on translational and clinical research from this novel peptide-based drug reinforcing its perspectives to treat cancer and paving the way to validate CK2 as a promising target in oncology.
Assuntos
Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/química , Peptídeos Cíclicos/farmacologia , Pesquisa Translacional Biomédica , Caseína Quinase II/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Proteínas Nucleares/metabolismo , Nucleofosmina , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de ProteínaRESUMO
A case of feline multicentric lymphoma is reported in an 8-year-old male cat weighing 4.7 kg. At the time of the clinical consultation the animal presented weight loss, anorexia and generalised lymphadenomegaly. After careful clinical observation and a detailed laboratory workup, the diagnosis of small cleaved cell lymphoma was established. It was classified as a stage III b multicentric lymphoma. Chemotherapy was initiated according to a classical COP protocol to which atorvastatin was added. After 34 months, the cat continues to enjoy an excellent quality of life with no clinical or haematological signs of lymphoma. This is the first report in clinical veterinary medicine about a new effective adjuvant therapy in feline multicentric lymphoma. Further studies are needed to confirm that the addition of atorvastatin can provide a regular, safe and improved treatment in feline lymphoma cases.
Assuntos
Doenças do Gato/tratamento farmacológico , Ácidos Heptanoicos/uso terapêutico , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Linfoma/veterinária , Pirróis/uso terapêutico , Animais , Atorvastatina , Gatos , Quimioterapia Adjuvante , Linfoma/tratamento farmacológico , Linfoma/patologia , MasculinoRESUMO
CIGB-300 is a proapoptotic peptide-based drug that abrogates the CK2-mediated phosphorylation. This peptide has antineoplastic effect on lung cancer cells in vitro and in vivo. To understand the mechanisms involved on such anticancer activity, the NCI-H125 cell line proteomic profile after short-term incubation (45 min) with CIGB-300 was investigated. As determined by 2-DE or 2D-LC-MS/MS, 137 proteins changed their abundances more than 2-fold in response to the CIGB-300 treatment. The expression levels of proteins related to ribosome biogenesis, metastasis, cell survival and proliferation, apoptosis, and drug resistance were significantly modulated by the presence of CIGB-300. The protein translation process was the most affected (23% of the identified proteins). From the proteome analysis of the NCI-H125 cell line, novel potentialities for CIGB-300 as anticancer agent were evidenced.
Assuntos
Peptídeos Cíclicos/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Proteoma/análise , Proteômica/métodos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida , Análise por Conglomerados , Eletroforese em Gel Bidimensional , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Espectrometria de Massas , Proteoma/classificaçãoRESUMO
CK2 is a serine/threonine kinase that is overexpressed in breast cancer and its inhibition is associated to reduced tumor growth and disease progression. CIGB-300 is an antitumor peptide with a novel mechanism of action, since it binds to protein kinase CK2 catalytic subunit alpha and to CK2 substrates thus preventing the enzyme activity. Our aim was to evaluate the potential therapeutic benefits of CIGB-300 on breast cancer disease using experimental models with translational relevance. We demonstrated that CIGB-300 reduces breast cancer cell growth in MDA-MB-231, MCF-7 and F3II cells, exerting a pro-apoptotic action and cell cycle arrest. We also found that CIGB-300 decreased cell adhesion, migration and clonogenic capacity of malignant cells. Effect on experimental breast cancer lung metastasis was evaluated after surgical removal of primary F3II tumors or after tail vein injection of tumor cells, also we evaluated CIGB-300 effect on spontaneous lung metastasis in an orthotopic model. Systemic CIGB-300 treatment inhibited breast cancer colonization of the lung, reducing the size and number of metastatic lesions. The present preclinical study establishes for the first time the efficacy of CIGB-300 on breast cancer. These encouraging results suggest that CIGB-300 could be used for the management of breast cancer as an adjuvant therapy after surgery, limiting tumor metastatic spread and thus protecting the patient from distant recurrence.
Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Caseína Quinase II/antagonistas & inibidores , Invasividade Neoplásica/prevenção & controle , Peptídeos Cíclicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Caseína Quinase II/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/secundário , Células MCF-7 , Camundongos Endogâmicos BALB C , Invasividade Neoplásica/patologia , Peptídeos Cíclicos/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêuticoRESUMO
Yerba Mate (Ilex paraguariensis St. Hill. Aquifoliaceae) is a native South American tree and has a large amount of bioactive compounds. Colorectal cancer (CRC) is one of the so-called westernized diseases and is the third most common cancer in both men and women. Efficient strategies for the treatment of CRC are extensively being explored including dietary intervention. The objective of our research was to evaluate the effects of Yerba Mate extract on cell proliferation, invasive capacity of tumor cells, and angiogenesis. For this, in vitro and in vivo experimentation was carried out using CRC models. The extract was generated by aqueous extraction and prepared according to traditional American procedure of preparing mate infusion. In vitro results showed that the Yerba Mate extract inhibits CT26 and COLO 205 cell proliferation with IC50 values of 0.25 and 0.46 mg/mL, respectively. We demonstrated by TUNEL assay that one of the mechanisms by which Yerba Mate extract decreases cell proliferation is by induction of apoptosis. In a murine syngeneic tumor model, oral administration of Yerba Mate extract in a dose of 1.6 g/kg/day significantly inhibited angiogenesis and tumor growth without affecting biological parameters or body weight. Our findings suggest that Yerba Mate may be a promising agent for the treatment of colon cancer and could be used as an herbal medicine or functional food ingredient. PRACTICAL APPLICATION: Considering the chemical composition and presence of phenolic compounds with their free-radical scavenging activities and bioactivities against colon cancer cells, Yerba Mate can be a promising candidate as healthy food sources in human nutrition, and also be considered a natural source of potential antitumor agents. Taking into account the economic importance of Yerba Mate in Argentina, this vegetable would have a greater commercial value as a functional food.
Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Neoplasias do Colo/tratamento farmacológico , Ilex paraguariensis/química , Extratos Vegetais/administração & dosagem , Animais , Antineoplásicos Fitogênicos/química , Argentina , Peso Corporal/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/fisiopatologia , Humanos , Camundongos , Fenóis/administração & dosagem , Fenóis/química , Fitoterapia , Extratos Vegetais/químicaRESUMO
The antitumor efficacy of the CK2 inhibitors so far described has not been extensively evaluated in cancer animal models. We have previously demonstrated that a proapoptotic cyclic peptide termed P15 delivered into the cells by the Tat Cell Penetrating Peptide was able to abrogate the CK2-mediated phosphorylation and induce tumor regression when injected directly into solid tumors in mice. Here we explored the antitumor effect by systemic administration of P15-Tat in a consecutive 5-day schedule through either intraperitoneal or intravenous route. Importantly, significant delay of tumor growth was observed at 2 mg/kg (p < 0.05), 10 mg/kg (p < 0.01) or 40 mg/kg (p < 0.001) after P15-Tat administration both in syngeneic murine tumors and human tumors xenografted in nude mice. In line with this, the systemic administration of P15-Tat induced apoptosis in the tumor as evidenced by in situ DNA fragmentation. Furthermore, we evidenced that 99mTc-labeled P15-Tat peptide was certainly accumulated on the tumors after administration by both routes. This report becomes the first describing the antitumor effect induced by systemic administration of a peptide that targets the acidic phosphorylation domain for CK2 substrates. Also, our data reinforces the perspectives of P15-Tat for the cancer targeted therapy.
Assuntos
Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/patologia , Caseína Quinase II/metabolismo , Inibidor de Quinase Dependente de Ciclina p15/farmacologia , Neoplasias Pulmonares/patologia , Inibidores de Proteínas Quinases/farmacologia , Animais , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Linhagem Celular Tumoral , Feminino , Produtos do Gene tat/genética , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/terapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Peptídeos Cíclicos/farmacologia , Fosforilação/efeitos dos fármacos , Distribuição Tecidual , Transplante HeterólogoRESUMO
AIM: To develop and characterize the antitumor activity of poly(D,L-lactic-co-glycolic acid) nanoparticles loaded with hemostatic and anticancer drug desmopressin (dDAVP). MATERIALS & METHODS: After full physicochemical characterization, anticancer activity of dDAVP-loaded poly(D,L-lactic-co-glycolic acid) nanoparticles (NPdDAVP) was evaluated in vitro and in vivo on a highly aggressive breast cancer model. RESULTS: After efficiently loading desmopressin in poly(D,L-lactic-co-glycolic acid) matrix, NPdDAVP exhibited suitable physicochemical characteristics for biomedical applications. NPdDAVP displayed a potent cytostatic effect in vitro, inhibiting tumor cell proliferation and colony forming ability. Moreover, intravenous treatment using nanoparticulated-dDAVP inhibited tumor progression and prolonged survival in animals bearing rapidly-growing mammary tumors. CONCLUSION: Within the framework of promising dDAVP repurposing studies, these findings support further preclinical development of the NPdDAVP for the management of highly aggressive cancer.
Assuntos
Antineoplásicos/farmacologia , Desamino Arginina Vasopressina/farmacologia , Portadores de Fármacos/química , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Feminino , Humanos , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Polímeros/química , Propriedades de SuperfícieRESUMO
OBJECTIVES: Casein kinase 2 (CK2) is overexpressed in several types of cancer. It has more than 300 substrates mainly involved in DNA reparation and replication, chromatin remodeling and cellular growth. In recent years CK2 became an interesting target for anticancer drug development. CIGB-300 is a peptidic inhibitor of CK2 activity, designed to bind to the phospho-acceptor domain of CK2 substrates, impairing the correct phosphorylation by the enzyme. The aim of this work was to explore the antitumor effects of this inhibitor in preclinical lung cancer models. MATERIALS AND METHODS: Human H125 and murine 3LL Lewis lung carcinoma cell lines were used to evaluate the effect of CIGB-300 treatment in vitro. For this purpose, adhesion, migration and invasion capabilities of cancer cells were tested. Proteolytic activity of tumor cell-secreted uPA and MMP after CIGB-300 incubation was also analyzed. In vivo anticancer efficacy of the peptide was evaluated using experimental and spontaneous lung colonization assays in C57BL/6 mice. Finally, in order to test the effect of CIGB-300 on tumor cell-induced angiogenesis, a modified Matrigel plug assay was conducted. RESULTS AND CONCLUSION: We demonstrate that treatment with low micromolar concentrations of CIGB-300 caused a drastic reduction of adhesion, migration and invasion of lung cancer cells. Reduced invasiveness after CIGB-300 incubation was associated with decreased proteolytic activity of tumor cell-conditioned medium. In vivo, intravenous administration of CIGB-300 (10mg/kg) markly decreased lung colonization and metastasis development of 3LL cells. Interestingly, after 5days of systemic treatment with CIGB-300, tumor cell-driven neovascularization was significantly reduced in comparison to control group. Altogether our data suggest an important role of CK2 in lung tumor development, suggesting a potential use of CIGB-300 as a novel therapeutic agent against lung cancer.
Assuntos
Caseína Quinase II/antagonistas & inibidores , Linhagem Celular Tumoral/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Metástase Neoplásica/tratamento farmacológico , Peptídeos Cíclicos/farmacologia , Administração Intravenosa , Inibidores da Angiogênese/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Caseína Quinase II/metabolismo , Proliferação de Células/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/tratamento farmacológico , Peptídeos Cíclicos/administração & dosagem , Peptídeos Cíclicos/metabolismo , Fosforilação/efeitos dos fármacosRESUMO
Tumor invasion, angiogenesis and metastasis involve secretion of proteolytic enzymes and cell migration into blood vessels. Tumor cells are capable of degrading the extracellular matrix via a proteolytic cascade that includes urokinase-type plasminogen activator (uPA) and matrix metalloproteases (MMPs). We have investigated the antitumor and antiangiogenic properties of soy isoflavone genistein in B16 melanoma and F3II mammary carcinoma mouse models. At non-cytotoxic concentrations (0.1-50 microM) genistein induced dose-dependent spindle-cell morphology and significantly reduced motility in both cell lines. Genistein inhibited uPA secreted by F3II cell monolayers, while inducing an increase in the proteolytic activity of B16 cells. On the contrary, the compound did not modify the MMP-9 and -2 produced by tumor cells. In vivo, i.p. administration of genistein at a dose of 10 mg/kg/day reduced tumor-induced angiogenesis in syngeneic mice implanted with B16 or F3II cells. Similar antiangiogenic effects were obtained with a soybean-based diet. This data suggest that tumor cell migration and proteolysis may be associated with the antitumor and antiangiogenic activity of soy isoflavone genistein.
Assuntos
Antineoplásicos/farmacologia , Genisteína/farmacologia , Glycine max/química , Isoflavonas/uso terapêutico , Neoplasias Mamárias Animais/tratamento farmacológico , Melanoma/tratamento farmacológico , Inibidores da Angiogênese/farmacologia , Animais , Meios de Cultivo Condicionados/metabolismo , Modelos Animais de Doenças , Humanos , Melanoma Experimental , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização PatológicaRESUMO
Desmopressin (DDAVP) is a synthetic vasopressin analog capable of inducing an increase in the plasma levels of von Willebrand factor and coagulation factor VIII. DDAVP has been used during surgery to prevent bleeding in patients with coagulation defects. We have previously demonstrated that adjuvant perioperative DDAVP therapy inhibits lung and lymph node metastasis in a breast cancer model. Here the effect of DDAVP on experimental lung colonization of B16 melanoma cells was investigated in a transgenic mice model with high levels of tissue inhibitor of metalloproteinases-1 (TIMP-1) in the systemic circulation. Transgenic C57BL/6j-CBA mice overexpressing human TIMP-1 in the liver under the control of the mouse albumin promoter/enhancer were employed. Treatment with DDAVP (2 microg/kg/dose) at the time of intravenous injection of B16 cells significantly inhibited the formation of lung metastases in TIMP-1 transgenic animals (p = 0.021), while no significant effect was obtained in control hybrid mice. The inhibition was not due to direct cytotoxic effects of DDAVP on tumor cells and no expression of vasopressin receptors was detected in B16 cells. Our data indicate that DDAVP therapy may impair successful implantation of circulating melanoma cells and suggest that high levels of circulating TIMP-1 display a cooperative role in the antitumor activity of the compound.