RESUMO
Graphene nanoplatelets (GrNs) emerge as promising conductive fillers to significantly enhance the electrical conductivity and strength of cementitious composites, contributing to the development of highly efficient composites and the advancement of non-destructive structural health monitoring techniques. However, the complexities involved in these nanoscale cementitious composites are markedly intricate. Conventional regression models encounter limitations in fully understanding these intricate compositions. Thus, the current study employed four machine learning (ML) methods such as decision tree (DT), categorical boosting machine (CatBoost), adaptive neuro-fuzzy inference system (ANFIS), and light gradient boosting machine (LightGBM) to establish strong prediction models for compressive strength (CS) of graphene nanoplatelets-based materials. An extensive dataset containing 172 data points was gathered from published literature for model development. The majority portion (70%) of the database was utilized for training the model while 30% was used for validating the model efficacy on unseen data. Different metrics were employed to assess the performance of the established ML models. In addition, SHapley Additve explanation (SHAP) for model interpretability. The DT, CatBoost, LightGBM, and ANFIS models exhibited excellent prediction efficacy with R-values of 0.8708, 0.9999, 0.9043, and 0.8662, respectively. While all the suggested models demonstrated acceptable accuracy in predicting compressive strength, the CatBoost model exhibited exceptional prediction efficiency. Furthermore, the SHAP analysis provided that the thickness of GrN plays a pivotal role in GrNCC, significantly influencing CS and consequently exhibiting the highest SHAP value of + 9.39. The diameter of GrN, curing age, and w/c ratio are also prominent features in estimating the strength of graphene nanoplatelets-based cementitious materials. This research underscores the efficacy of ML methods in accurately forecasting the characteristics of concrete reinforced with graphene nanoplatelets, providing a swift and economical substitute for laborious experimental procedures. It is suggested that to improve the generalization of the study, more inputs with increased datasets should be considered in future studies.
RESUMO
The entraining and distribution of air voids in the concrete matrix is a complex process that makes the mechanical properties of lightweight foamed concrete (LFC) highly unpredictable. To study the complex nature of aerated concrete, a reliable and robust prediction model is required, employing different machine learning (ML) techniques. This study aims to predict the compressive strength of LFC by using a support vector machine (SVM) as an individual learner along with bagging, boosting, and random forest (RF) as a modified ensemble learner. For that purpose, a database of 191 data points was collected from published literature, where the mix design ingredients, i.e., cement content, sand content, water to cement ratio, and foam volume, were chosen to predict the compressive strength of LFC. The 10-K fold cross-validation method and different statistical error and regression tools, i.e., mean absolute error (MAE), root means square error (RMSE), and coefficient of determinant (R2), were used to evaluate the performance of the developed ML models. The modified ensemble learner (RF) outperforms all models by yielding a strong correlation of R2 = 0.96 along with the lowest statistical error values of MAE = 1.84 MPa and RMSE = 2.52 MPa. Overall, the result suggests that the ensemble learners would significantly enhance the performance and robustness of ML models.
RESUMO
High temperature severely affects the nature of the ingredients used to produce concrete, which in turn reduces the strength properties of the concrete. It is a difficult and time-consuming task to achieve the desired compressive strength of concrete. However, the application of supervised machine learning (ML) approaches makes it possible to initially predict the targeted result with high accuracy. This study presents the use of a decision tree (DT), an artificial neural network (ANN), bagging, and gradient boosting (GB) to forecast the compressive strength of concrete at high temperatures on the basis of 207 data points. Python coding in Anaconda navigator software was used to run the selected models. The software requires information regarding both the input variables and the output parameter. A total of nine input parameters (water, cement, coarse aggregate, fine aggregate, fly ash, superplasticizers, silica fume, nano silica, and temperature) were incorporated as the input, while one variable (compressive strength) was selected as the output. The performance of the employed ML algorithms was evaluated with regards to statistical indicators, including the coefficient correlation (R2), mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE). Individual models using DT and ANN gave R2 equal to 0.83 and 0.82, respectively, while the use of the ensemble algorithm and gradient boosting gave R2 of 0.90 and 0.88, respectively. This indicates a strong correlation between the actual and predicted outcomes. The k-fold cross-validation, coefficient correlation (R2), and lesser errors (MAE, MSE, and RMSE) showed better performance than the ensemble algorithms. Sensitivity analyses were also conducted in order to check the contribution of each input variable. It has been shown that the use of the ensemble machine learning algorithm would enhance the performance level of the model.
RESUMO
Structures located on the coast are subjected to the long-term influence of chloride ions, which cause the corrosion of steel reinforcements in concrete elements. This corrosion severely affects the performance of the elements and may shorten the lifespan of an entire structure. Even though experimental activities in laboratories might be a solution, they may also be problematic due to time and costs. Thus, the application of individual machine learning (ML) techniques has been investigated to predict surface chloride concentrations (Cc) in marine structures. For this purpose, the values of Cc in tidal, splash, and submerged zones were collected from an extensive literature survey and incorporated into the article. Gene expression programming (GEP), the decision tree (DT), and an artificial neural network (ANN) were used to predict the surface chloride concentrations, and the most accurate algorithm was then selected. The GEP model was the most accurate when compared to ANN and DT, which was confirmed by the high accuracy level of the K-fold cross-validation and linear correlation coefficient (R2), mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE) parameters. As is shown in the article, the proposed method is an effective and accurate way to predict the surface chloride concentration without the inconveniences of laboratory tests.
RESUMO
Machine learning techniques are widely used algorithms for predicting the mechanical properties of concrete. This study is based on the comparison of algorithms between individuals and ensemble approaches, such as bagging. Optimization for bagging is done by making 20 sub-models to depict the accurate one. Variables like cement content, fine and coarse aggregate, water, binder-to-water ratio, fly-ash, and superplasticizer are used for modeling. Model performance is evaluated by various statistical indicators like mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE). Individual algorithms show a moderate bias result. However, the ensemble model gives a better result with R2 = 0.911 compared to the decision tree (DT) and gene expression programming (GEP). K-fold cross-validation confirms the model's accuracy and is done by R2, MAE, MSE, and RMSE. Statistical checks reveal that the decision tree with ensemble provides 25%, 121%, and 49% enhancement for errors like MAE, MSE, and RMSE between the target and outcome response.
RESUMO
Artificial intelligence and machine learning are employed in creating functions for the prediction of self-compacting concrete (SCC) strength based on input variables proportion as cement replacement. SCC incorporating waste material has been used in learning approaches. Artificial neural network (ANN) support vector machine (SVM) and gene expression programming (GEP) consisting of 300 datasets have been utilized in the model to foresee the mechanical property of SCC. Data used in modeling consist of several input parameters such as cement, water-binder ratio, coarse aggregate, fine aggregate, and fly ash (FA) in combination with the superplasticizer. The best predictive models were selected based on the coefficient of determination (R2) results and model validation. Empirical relation with mathematical expression has been proposed using ANN, SVM, and GEP. The efficiency of the models is assessed by permutation features importance, statistical analysis, and comparison between regression models. The results reveal that the proposed machine learning models achieved adamant accuracy and has elucidated performance in the prediction aspect.
RESUMO
To avoid time-consuming, costly, and laborious experimental tests that require skilled personnel, an effort has been made to formulate the depth of wear of fly-ash concrete using a comparative study of machine learning techniques, namely random forest regression (RFR) and gene expression programming (GEP). A widespread database comprising 216 experimental records was constructed from available research. The database includes depth of wear as a response parameter and nine different explanatory variables, i.e., cement content, fly ash, water content, fine and coarse aggregate, plasticizer, air-entraining agent, age of concrete, and time of testing. The performance of the models was judged via statistical metrics. The GEP model gives better performance with R2 and ρ equals 0.9667 and 0.0501 respectively and meet with the external validation criterion suggested in the previous literature. The k-fold cross-validation also verifies the accurateness of the model by evaluating R2, RSE, MAE, and RMSE. The sensitivity analysis of GEP equation indicated that the time of testing is the influential parameter. The results of this research can help the designers, practitioners, and researchers to quickly estimate the depth of wear of fly-ash concrete thus shortening its ecological susceptibilities that push to sustainable and faster construction from the viewpoint of environmentally friendly waste management.
RESUMO
Silica fume (SF) is a mineral additive that is widely used in the construction industry when producing sustainable concrete. The integration of SF in concrete as a partial replacement for cement has several evident benefits, including reduced CO2 emissions, cost-effective concrete, increased durability, and mechanical qualities. As environmental issues continue to grow, the development of predictive machine learning models is critical. Thus, this study aims to create modelling tools for estimating the compressive and cracking tensile strengths of silica fume concrete. Multilayer perceptron neural networks (MLPNN), adaptive neural fuzzy detection systems (ANFIS), and genetic programming are all used (GEP). From accessible literature data, a broad and accurate database of 283 compressive strengths and 149 split tensile strengths was created. The six most significant input parameters were cement, fine aggregate, coarse aggregate, water, superplasticizer, and silica fume. Different statistical measures were used to evaluate models, including mean absolute error, root mean square error, root mean squared log error and the coefficient of determination. Both machine learning models, MLPNN and ANFIS, produced acceptable results with high prediction accuracy. Statistical analysis revealed that the ANFIS model outperformed the MLPNN model in terms of compressive and tensile strength prediction. The GEP models outperformed all other models. The predicted values for compressive strength and splitting tensile strength for GEP models were consistent with experimental values, with an R2 value of 0.97 for compressive strength and 0.93 for splitting tensile strength. Furthermore, sensitivity tests revealed that cement and water are the determining parameters in the growth of compressive strength but have the least effect on splitting tensile strength. Cross-validation was used to avoid overfitting and to confirm the output of the generalized modelling technique. GEP develops an empirical expression for each outcome to forecast future databases' features to promote the usage of green concrete.
RESUMO
This study provides the application of a machine learning-based algorithm approach names "Multi Expression Programming" (MEP) to forecast the compressive strength of carbon fiber-reinforced polymer (CFRP) confined concrete. The suggested computational Multiphysics model is based on previously reported experimental results. However, critical parameters comprise both the geometrical and mechanical properties, including the height and diameter of the specimen, the modulus of elasticity of CFRP, unconfined strength of concrete, and CFRP overall layer thickness. A detailed statistical analysis is done to evaluate the model performance. Then the validation of the soft computational model is made by drawing a comparison with experimental results and other external validation criteria. Moreover, the results and predictions of the presented soft computing model are verified by incorporating a parametric analysis, and the reliability of the model is compared with available models in the literature by an experimental versus theoretical comparison. Based on the findings, the valuation and performance of the proposed model is assessed with other strength models provided in the literature using the collated database. Thus the proposed model outperformed other existing models in term of accuracy and predictability. Both parametric and statistical analysis demonstrate that the proposed model is well trained to efficiently forecast strength of CFRP wrapped structural members. The presented study will promote its utilization in rehabilitation and retrofitting and contribute towards sustainable construction material.
RESUMO
Carbon nanotubes (CNTs) and graphite nanoplatelets (GNPs) belong to the family of graphite nanomaterials (GNMs) and are promising candidates for enhancing properties of cementitious matrix. However, the problem lies with their improper dispersion. In this paper graphite nanoplatelets are used with carbon nanotubes for dispersion facilitation of CNTs in cement mortar. The intended role is to use the GNPs particles for dispersion of CNTs and to investigate the synergistic effect of resulting nano-intruded mortar. Mechanical properties such as flexure and compressive strength have been studied along with volumetric stability, rheology, and workability. Varying dosages of CNTs to GNPs have been formulated and were analyzed. The hybrid use of CNTs-GNPs shows promise. Scanning electron microscopy reveals that hybrid CNTs/GNPs are well-suited for use in cement mortar composite performing a dual function.