Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Muscle Res Cell Motil ; 44(1): 25-36, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37014477

RESUMO

Contractile function of skeletal muscle relies on the ability of muscle fibers to trigger and propagate action potentials (APs). These electrical signals are created by transmembrane ion transport through ion channels and membrane transporter systems. In this regard, the Cl- ion channel 1 (ClC-1) and the Na+/K--ATPase (NKA) are central for maintaining ion homeostasis across the sarcolemma during intense contractile activity. Therefore, this randomized controlled trial aimed to investigate the changes in ClC-1 and specific NKA subunit isoform expression in response to six weeks (18 training sessions) of high-load resistance exercise (HLRE) and low-load blood flow restricted resistance exercise (BFRRE), respectively. HLRE was conducted as 4 sets of 12 repetitions of knee extensions performed at 70% of 1 repetition maximum (RM), while BFRRE was conducted as 4 sets of knee extensions at 30% of 1RM performed to volitional fatigue. Furthermore, the potential associations between protein expression and contractile performance were investigated. We show that muscle ClC-1 abundance was not affected by either exercise modality, whereas NKA subunit isoforms [Formula: see text]2 and [Formula: see text]1 increased equally by appx. 80-90% with BFRRE (p < 0.05) and 70-80% with HLRE (p < 0.05). No differential impact between exercise modalities was observed. At baseline, ClC-1 protein expression correlated inversely with dynamic knee extensor strength (r=-0.365, p = 0.04), whereas no correlation was observed between NKA subunit content and contractile performance at baseline. However, training-induced changes in NKA [Formula: see text]2 subunit (r = 0.603, p < 0.01) and [Formula: see text]1 subunit (r = 0.453, p < 0.05) correlated with exercise-induced changes in maximal voluntary contraction. These results suggest that the initial adaptation to resistance-based exercise does not involve changes in ClC-1 abundance in untrained skeletal muscle, and that increased content of NKA subunits may facilitate increases in maximal force production.


Assuntos
Músculo Esquelético , Treinamento Resistido , Humanos , Músculo Esquelético/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Exercício Físico/fisiologia , Contração Muscular , Isoformas de Proteínas/metabolismo , Treinamento Resistido/métodos
2.
Am J Physiol Cell Physiol ; 321(2): C257-C268, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34106790

RESUMO

Animal models clearly illustrate that the maintenance of skeletal muscle mass depends on the function and interaction of a heterogeneous population of resident and infiltrating mononuclear cells. Several lines of evidence suggest that mononuclear cells also play a role in muscle wasting in humans, and targeting these cells may open new treatment options for intervention or prevention in sarcopenia. Methodological and ethical constraints have perturbed exploration of the cellular characteristics and function of mononuclear cells in human skeletal muscle. Thus, investigations of cellular phenotypes often depend on immunohistochemical analysis of small tissue samples obtained by needle biopsies, which do not match the deep phenotyping of mononuclear cells obtained from animal models. Here, we have developed a protocol for fluorescence-activated cell sorting (FACS), based on single-cell RNA-sequencing data, for quantifying and characterizing mononuclear cell populations in human skeletal muscle. Muscle stem cells, fibro-adipogenic progenitors, and two subsets of macrophages (CD11c+/-) are present in needle biopsies in comparable quantities per milligram tissue to open surgical biopsies. We find that direct cell isolation is preferable due to a substantial shift in transcriptome when using preculture before the FACS procedure. Finally, in vitro validation of the cellular phenotype of muscle stem cells, fibro-adipogenic progenitors, and macrophages confirms population-specific traits. This study demonstrates that mononuclear cell populations can be quantified and subsequently analyzed from needle biopsy material and opens the perspective for future clinical studies of cellular mechanisms in muscle wasting.


Assuntos
Biópsia , Diferenciação Celular/fisiologia , Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/citologia , Adipogenia/fisiologia , Biópsia/métodos , Separação Celular/métodos , Citometria de Fluxo/métodos , Humanos , Macrófagos/citologia
3.
Rheumatol Int ; 38(6): 1031-1041, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29651539

RESUMO

To investigate satellite cells (SCs) and myonuclei characteristics in patients with rheumatoid arthritis (RA). Resting biopsies from m. vastus lateralis were obtained from thirteen RA patients and thirteen matched healthy controls (CON). Muscle biopsies were immunohistochemically stained and analyzed for fiber type specific content of SCs (Pax7+), proliferating SCs (Pax7+/MyoD+) and differentiating SCs (myogenin+). Furthermore, we quantified fiber type specific content of myonuclei and myofiber cross-sectional area (CSA). Finally, newly formed/regenerating fibers expressing neonatal MHC (nMHC+) were determined. The fiber type specific number of SCs did not differ between RA patients and CON, nor did the content of proliferating or differentiating SCs. In contrast, the content of myonuclei per fiber was higher in RA patients than CON for both type I (2.01 ± 0.41 vs. 1.42 ± 0.40 myonuclei/fiber, p < 0.01) and type II fibers (2.01 ± 0.41 vs. 1.37 ± 0.32 myonuclei/fiber, p < 0.01). No differences were observed in fiber composition, fiber type specific CSA or content of nMHC+ fibers. Our results indicate an increased propensity for myogenic differentiation of SC leading to an elevated myonuclear content in the skeletal muscle of RA patients. It is hypothesized that this could be a compensatory regulatory response related to the chronic inflammation in these patients.


Assuntos
Artrite Reumatoide/patologia , Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/patologia , Estudos Transversais , Dinamarca , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
4.
Muscle Nerve ; 55(1): 128-130, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27603578

RESUMO

INTRODUCTION: In this study we investigated the impact of whey protein hydrolysate and maltodextrin (WPH) intake on intramuscular connective tissue (IMCT) protein fractional synthesis rate (FSR) after maximal shortening and lengthening contractions. METHODS: Twenty young men were randomized to receive either WPH or maltodextrin [carbohydrate (CHO)] immediately after completion of unilateral shortening and lengthening knee extensions. Ring-13 C6 -phenylalanine was infused, and muscle biopsies were obtained. IMCT protein FSR was measured at 1-5, as well as 1-3 and 3-5 hours after contractions and nutrient intake. RESULTS: During the 1-3-hour recovery, lengthening contractions resulted in a higher FSR than shortening contractions (P < 0.01), independent of supplementation type and, during the 3-5-hour recovery, WPH had a higher FSR than CHO (P < 0.05), independent of prior contraction mode. CONCLUSIONS: The later appearance of a stimulating effect of WPH on the IMCT FSR after strenuous muscle contractions lends support to its ability to promote recovery of the muscle connective tissue matrix after exercise. Muscle Nerve 55: 128-130, 2017.


Assuntos
Tecido Conjuntivo/efeitos dos fármacos , Tecido Conjuntivo/metabolismo , Músculo Esquelético/citologia , Polissacarídeos/farmacologia , Proteínas do Soro do Leite/biossíntese , Adulto , Análise de Variância , Lateralidade Funcional , Humanos , Masculino , Contração Muscular/fisiologia , Proteínas Musculares/metabolismo , Fenilalanina , Proteínas do Soro do Leite/metabolismo , Adulto Jovem
5.
J Physiol ; 594(3): 727-43, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26607845

RESUMO

KEY POINT: Erythropoietin (Epo) treatment may induce myogenic differentiation factor (MyoD) expression and prevent apoptosis in satellite cells (SCs) in murine and in vitro models. Endurance training stimulates SC proliferation in vivo in murine and human skeletal muscle. In the present study, we show, in human skeletal muscle, that treatment with an Epo-stimulating agent (darbepoetin-α) in vivo increases the content of MyoD(+) SCs in healthy young men. Moreover, we report that Epo receptor mRNA is expressed in adult human SCs, suggesting that Epo may directly target SCs through ligand-receptor interaction. Moreover, endurance training, but not Epo treatment, increases the SC content in type II myofibres, as well as the content of MyoD(+) SCs. Collectively, our results suggest that Epo treatment can regulate human SCs in vivo, supported by Epo receptor mRNA expression in human SCs. In effect, long-term Epo treatment during disease conditions involving anaemia may impact SCs and warrants further investigation. Satellite cell (SC) proliferation is observed following erythropoitin treatment in vitro in murine myoblasts and endurance training in vivo in human skeletal muscle. The present study aimed to investigate the effects of prolonged erythropoiesis-stimulating agent (ESA; darbepoetin-α) treatment and endurance training, separately and combined, on SC quantity and commitment in human skeletal muscle. Thirty-five healthy, untrained men were randomized into four groups: sedentary-placebo (SP, n = 9), sedentary-ESA (SE, n = 9), training-placebo (TP, n = 9) or training-ESA (TE, n = 8). ESA/placebo was injected once weekly and training consisted of ergometer cycling three times a week for 10 weeks. Prior to and following the intervention period, blood samples and muscle biopsies were obtained and maximal oxygen uptake (V̇O2, max) was measured. Immunohistochemical analyses were used to quantify fibre type specific SCs (Pax7(+)), myonuclei and active SCs (Pax7(+)/MyoD(+)). ESA treatment led to elevated haematocrit, whereas endurance training increased V̇O2, max. Endurance training led to an increase in SCs associated with type II fibres (P < 0.05), whereas type I fibres showed no changes. Both ESA treatment and endurance training increased Pax7(+)/MyoD(+) cells, whereas only ESA treatment increased the total content of MyoD(+) cells. Epo-R mRNA presence in adult SC was tested with real-time RT-PCR using fluorescence-activated cell sorting (CD56(+)/CD45(-)/CD31(-)) to isolate cells from a human rectus abdominis muscle and was found to be considerably higher than in whole muscle. In conclusion, endurance training and ESA treatment may separately stimulate SC commitment to the myogenic program. Furthermore, ESA-treatment may alter SC activity by direct interaction with the Epo-R expressed on SCs.


Assuntos
Darbepoetina alfa/farmacologia , Exercício Físico/fisiologia , Cadeias Pesadas de Miosina/fisiologia , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Células Satélites de Músculo Esquelético/fisiologia , Adulto , Humanos , Masculino , Músculo Esquelético/fisiologia , Resistência Física/fisiologia , RNA Mensageiro/metabolismo , Receptores da Eritropoetina/genética , Células Satélites de Músculo Esquelético/metabolismo , Método Simples-Cego , Adulto Jovem
6.
Amino Acids ; 47(4): 767-78, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25559753

RESUMO

Unaccustomed high-intensity eccentric exercise (ECC) can provoke muscle damage including several days of muscle force loss. Post-exercise dietary supplementation may provide a strategy to accelerate rate of force regain by affecting mechanisms related to muscle protein turnover. The aim of the current study was to investigate if protein signaling mechanisms involved in muscle protein turnover would be differentially affected by supplementation with either whey protein hydrolysate and carbohydrate (WPH+CHO) versus isocaloric carbohydrate (CHO) after muscle-damaging ECC. Twenty-four young healthy participants received either WPH+CHO (n = 12) or CHO supplements (n = 12) during post-exercise recovery from 150 maximal unilateral eccentric contractions. Prior to, at 3 h and at 24, 48, 96 and/or 168 h post-exercise, muscle strength, muscle soreness, and Akt-mTOR and FOXO signaling proteins, were measured in an ECC exercising leg and in the contralateral non-exercise control leg (CON). After ECC, muscle force decreased by 23-27 % at 24 h post-exercise, which was followed by gradual, although not full recovery at 168 h post-exercise, with no differences between supplement groups. Phosphorylation of mTOR, p70S6K and rpS6 increased and phosphorylation of FOXO1 and FOXO3 decreased in the ECC leg, with no differences between supplement groups. Phosphorylation changes were also observed for rpS6, FOXO1 and FOXO3a in the CON leg, suggesting occurrence of remote tissue effects. In conclusion, divergent dietary supplementation types did not produce differences in signaling for muscle turnover during recovery from muscle-damaging exercise.


Assuntos
Suplementos Nutricionais/análise , Proteínas Musculares/metabolismo , Músculo Esquelético/lesões , Mialgia/metabolismo , Treinamento Resistido/efeitos adversos , Exercício Físico , Humanos , Masculino , Músculo Esquelético/metabolismo , Mialgia/etiologia , Transdução de Sinais , Adulto Jovem
7.
Amino Acids ; 46(11): 2503-16, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25063205

RESUMO

Human skeletal muscle satellite cells (SCs) are essential for muscle regeneration and remodeling processes in healthy and clinical conditions involving muscle breakdown. However, the potential influence of protein supplementation on post-exercise SC regulation in human skeletal muscle has not been well investigated. In a comparative human study, we investigated the effect of hydrolyzed whey protein supplementation following eccentric exercise on fiber type-specific SC accumulation. Twenty-four young healthy subjects received either hydrolyzed whey protein + carbohydrate (whey, n = 12) or iso-caloric carbohydrate (placebo, n = 12) during post-exercise recovery from 150 maximal unilateral eccentric contractions. Prior to and 24, 48 and 168 h post-exercise, muscle biopsies were obtained from the exercise leg and analyzed for fiber type-specific SC content. Maximal voluntary contraction (MVC) and serum creatine kinase (CK) were evaluated as indices of recovery from muscle damage. In type II fiber-associated SCs, the whey group increased SCs/fiber from 0.05 [0.02; 0.07] to 0.09 [0.06; 0.12] (p < 0.05) and 0.11 [0.06; 0.16] (p < 0.001) at 24 and 48 h, respectively, and exhibited a difference from the placebo group (p < 0.05) at 48 h. The whey group increased SCs/myonuclei from 4 % [2; 5] to 10 % [4; 16] (p < 0.05) at 48 h, whereas the placebo group increased from 5 % [2; 7] to 9 % [3; 16] (p < 0.01) at 168 h. MVC decreased (p < 0.001) and muscle soreness and CK increased (p < 0.001), irrespective of supplementation. In conclusion, whey protein supplementation may accelerate SC proliferation as part of the regeneration or remodeling process after high-intensity eccentric exercise.


Assuntos
Suplementos Nutricionais , Exercício Físico/fisiologia , Proteínas do Leite/química , Músculos/fisiologia , Adulto , Proliferação de Células , Creatina Quinase/sangue , Estudos Cross-Over , Dieta , Método Duplo-Cego , Humanos , Hidrólise , Imuno-Histoquímica , Contração Isométrica , Masculino , Contração Muscular , Músculo Esquelético/metabolismo , Fator de Transcrição PAX7/metabolismo , Regeneração , Fatores de Tempo , Proteínas do Soro do Leite , Adulto Jovem
8.
Amino Acids ; 46(10): 2377-92, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25005782

RESUMO

Greater force produced with eccentric (ECC) compared to concentric (CONC) contractions, may comprise a stronger driver of muscle growth, which may be further augmented by protein supplementation. We investigated the effect of differentiated contraction mode with either whey protein hydrolysate and carbohydrate (WPH + CHO) or isocaloric carbohydrate (CHO) supplementation on regulation of anabolic signalling, muscle protein synthesis (MPS) and muscle hypertrophy. Twenty-four human participants performed unilateral isolated maximal ECC versus CONC contractions during exercise habituation, single-bout exercise and 12 weeks of training combined with WPH + CHO or CHO supplements. In the exercise-habituated state, p-mTOR, p-p70S6K, p-rpS6 increased by approximately 42, 206 and 213 %, respectively, at 1 h post-exercise, with resistance exercise per se; whereas, the phosphorylation was exclusively maintained with ECC at 3 and 5 h post-exercise. This acute anabolic signalling response did not differ between the isocaloric supplement types, neither did protein fractional synthesis rate differ between interventions. Twelve weeks of ECC as well as CONC resistance training augmented hypertrophy with WPH + CHO group compared to the CHO group (7.3 ± 1.0 versus 3.4 ± 0.8 %), independently of exercise contraction type. Training did not produce major changes in basal levels of Akt-mTOR pathway components. In conclusion, maximal ECC contraction mode may constitute a superior driver of acute anabolic signalling that may not be mirrored in the muscle protein synthesis rate. Furthermore, with prolonged high-volume resistance training, contraction mode seems less influential on the magnitude of muscle hypertrophy, whereas protein and carbohydrate supplementation augments muscle hypertrophy as compared to isocaloric carbohydrate supplementation .


Assuntos
Suplementos Nutricionais , Proteínas do Leite/administração & dosagem , Contração Muscular , Desenvolvimento Muscular , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Treinamento Resistido , Adulto , Dinamarca , Carboidratos da Dieta/administração & dosagem , Método Duplo-Cego , Metabolismo Energético , Exercício Físico , Humanos , Masculino , Fosforilação , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Proteínas do Soro do Leite , Adulto Jovem
9.
Cell Metab ; 36(6): 1204-1236, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38490209

RESUMO

Diabetes represents a major public health concern with a considerable impact on human life and healthcare expenditures. It is now well established that diabetes is characterized by a severe skeletal muscle pathology that limits functional capacity and quality of life. Increasing evidence indicates that diabetes is also one of the most prevalent disorders characterized by impaired skeletal muscle regeneration, yet underlying mechanisms and therapeutic treatments remain poorly established. In this review, we describe the cellular and molecular alterations currently known to occur during skeletal muscle regeneration in people with diabetes and animal models of diabetes, including its associated comorbidities, e.g., obesity, hyperinsulinemia, and insulin resistance. We describe the role of myogenic and non-myogenic cell types on muscle regeneration in conditions with or without diabetes. Therapies for skeletal muscle regeneration and gaps in our knowledge are also discussed, while proposing future directions for the field.


Assuntos
Diabetes Mellitus , Músculo Esquelético , Regeneração , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Animais , Diabetes Mellitus/terapia , Diabetes Mellitus/metabolismo , Desenvolvimento Muscular , Resistência à Insulina
10.
J Physiol ; 591(15): 3749-63, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23753523

RESUMO

The striated muscle activator of Rho signalling (STARS) pathway is suggested to provide a link between external stress responses and transcriptional regulation in muscle. However, the sensitivity of STARS signalling to different mechanical stresses has not been investigated. In a comparative study, we examined the regulation of the STARS signalling pathway in response to unilateral resistance exercise performed as either eccentric (ECC) or concentric (CONC) contractions as well as prolonged training; with and without whey protein supplementation. Skeletal muscle STARS, myocardian-related transcription factor-A (MRTF-A) and serum response factor (SRF) mRNA and protein, as well as muscle cross-sectional area and maximal voluntary contraction, were measured. A single-bout of exercise produced increases in STARS and SRF mRNA and decreases in MRTF-A mRNA with both ECC and CONC exercise, but with an enhanced response occurring following ECC exercise. A 31% increase in STARS protein was observed exclusively after CONC exercise (P < 0.001), while pSRF protein levels increased similarly by 48% with both CONC and ECC exercise (P < 0.001). Prolonged ECC and CONC training equally stimulated muscle hypertrophy and produced increases in MRTF-A protein of 125% and 99%, respectively (P < 0.001). No changes occurred for total SRF protein. There was no effect of whey protein supplementation. These results show that resistance exercise provides an acute stimulation of the STARS pathway that is contraction mode dependent. The responses to acute exercise were more pronounced than responses to accumulated training, suggesting that STARS signalling is primarily involved in the initial phase of exercise-induced muscle adaptations.


Assuntos
Suplementos Nutricionais , Proteínas dos Microfilamentos/metabolismo , Proteínas do Leite/farmacologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Treinamento Resistido , Fatores de Transcrição/metabolismo , Adulto , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Masculino , Proteínas dos Microfilamentos/genética , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Fator de Resposta Sérica/genética , Fator de Resposta Sérica/metabolismo , Transdução de Sinais , Transativadores , Fatores de Transcrição/genética , Proteínas do Soro do Leite , Adulto Jovem
11.
STAR Protoc ; 4(1): 102008, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36640368

RESUMO

The ability of stem cells to activate and differentiate is critical for maintaining the regenerative capacity of skeletal muscle. Here, we detail steps for specific quantification and isolation of primary human fibro-adipogenic progenitors and skeletal muscle stem cells using fluorescence-activated cell sorting. We describe important phenotypic traits such as time to enter the cell cycle and assessment of cell differentiation for the isolated cell populations. The technique has been applied on tissue obtained from surgery and needle biopsies. For complete details on the use and execution of this protocol, please refer to Farup et al. (2021).1.


Assuntos
Adipogenia , Células-Tronco , Humanos , Citometria de Fluxo/métodos , Diferenciação Celular/fisiologia , Músculo Esquelético
12.
Front Cell Dev Biol ; 11: 1246998, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37745291

RESUMO

Adult stem cells play key roles in tissue homeostasis and regeneration. Recent evidence suggests that dietary interventions can significantly impact adult stem cell function. Some of these effects depend on ketone bodies. Adult stem cells could therefore potentially be manipulated through dietary regimens or exogenous ketone body supplementation, a possibility with significant implications for regenerative medicine. In this review we discuss recent findings of the mechanisms by which ketone bodies could influence adult stem cells, including ketogenesis in adult stem cells, uptake and transport of circulating ketone bodies, receptor-mediated signaling, and changes to cellular metabolism. We also discuss the potential effects of ketone bodies on intracellular processes such as protein acetylation and post-transcriptional control of gene expression. The exploration of mechanisms underlying the effects of ketone bodies on stem cell function reveals potential therapeutic targets for tissue regeneration and age-related diseases and suggests future research directions in the field of ketone bodies and stem cells.

13.
J Appl Physiol (1985) ; 134(4): 1047-1062, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36825645

RESUMO

Low-load blood flow-restricted resistance exercise (BFRRE) constitutes an effective means to produce skeletal muscle hypertrophy. Nonetheless, its applicability to counteract the age-related skeletal muscle decay at a cellular level, is not clear. Therefore, we investigated the effect of BFRRE on muscle fiber morphology, integrated muscle protein synthesis, muscle stem cells (MuSCs), myonuclear content, and muscle functional capacity in healthy older individuals. Twenty-three participants with a mean age of 66 yr (56-75 yr) were randomized to 6 wk of supervised BFRRE (3 sessions per week) or non-exercise control (CON). Biopsies were collected from the vastus lateralis before and after the intervention. Immunofluorescent microscopy was utilized to assess muscle fiber type-specific cross-sectional area (CSA) as well as MuSC and myonuclear content. Deuterium oxide was orally administered throughout the intervention period, enabling assessment of integrated myofibrillar and connective tissue protein fractional synthesis rate (FSR). BFRRE produced uniform ∼20% increases in the fiber CSA of both type I and type II fibers (P < 0.05). This occurred concomitantly with improvements in both maximal muscle strength and strength-endurance capacity but in the absence of increased MuSC content and myonuclear addition. The observed muscle fiber hypertrophy was not mirrored by increases in either myofibrillar or connective tissue FSR. In conclusion, BFRRE proved effective in stimulating skeletal muscle growth and increased muscle function in older individuals, which advocates for the use of BFRRE as a countermeasure of age-related deterioration of skeletal muscle mass and function.NEW & NOTEWORTHY We provide novel insight, that as little as 6 wk of low-load blood flow-restricted resistance exercise (BFRRE) produces pronounced fiber type-independent hypertrophy, alongside improvements across a broad range of muscle functional capacity in older individuals. Notably, since these results were obtained with a modest exercise volume and in a very time-efficient manner, BFRRE may represent a potent exercise strategy to counteract age-related muscle decay.


Assuntos
Treinamento Resistido , Humanos , Idoso , Treinamento Resistido/métodos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Hipertrofia , Músculo Quadríceps/metabolismo
14.
Commun Biol ; 6(1): 111, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707617

RESUMO

Fatty infiltration, the ectopic deposition of adipose tissue within skeletal muscle, is mediated via the adipogenic differentiation of fibro-adipogenic progenitors (FAPs). We used single-nuclei and single-cell RNA sequencing to characterize FAP heterogeneity in patients with fatty infiltration. We identified an MME+ FAP subpopulation which, based on ex vivo characterization as well as transplantation experiments, exhibits high adipogenic potential. MME+ FAPs are characterized by low activity of WNT, known to control adipogenic commitment, and are refractory to the inhibitory role of WNT activators. Using preclinical models for muscle damage versus fatty infiltration, we show that many MME+ FAPs undergo apoptosis during muscle regeneration and differentiate into adipocytes under pathological conditions, leading to a reduction in their abundance. Finally, we utilized the varying fat infiltration levels in human hip muscles and found less MME+ FAPs in fatty infiltrated human muscle. Altogether, we have identified the dominant adipogenic FAP subpopulation in skeletal muscle.


Assuntos
Adipogenia , Músculo Esquelético , Humanos , Diferenciação Celular/fisiologia , Adipócitos
16.
J Strength Cond Res ; 26(2): 398-407, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22266546

RESUMO

Fascicle angle (FA) is suggested to increase as a result of fiber hypertrophy and furthermore to serve as the explanatory link in the discrepancy in the relative adaptations in the anatomical cross-sectional area (CSA) and fiber CSA after resistance training (RT). In contrast to RT, the effects of endurance training on FA are unclear. The purpose of this study was therefore to investigate and compare the longitudinal effects of either progressive endurance training (END, n = 7) or RT (n = 7) in young untrained men on FA, anatomical CSA, and fiber CSA. Muscle morphological measures included the assessment of vastus lateralis FA obtained by ultrasonography and anatomical CSA by magnetic resonance imaging of the thigh and fiber CSA deduced from histochemical analyses of biopsy samples from m. vastus lateralis. Functional performance measures included VO2max and maximal voluntary contraction (MVC). The RT produced increases in FA by 23 ± 8% (p < 0.01), anatomical CSA of the knee extensor muscles by 9 ± 3% (p = 0.001), and fiber CSA by 19 ± 7% (p < 0.05). RT increased knee extensor MVC by 20 ± 5% (p < 0.001). END increased VO2max by 10 ± 2% but did not evoke changes in FA, anatomical CSA, or in fiber CSA. In conclusion, the morphological changes induced by 10 weeks of RT support that FA does indeed serve as the explanatory link in the observed discrepancy between the changes in anatomical and fiber CSA. Contrarily, 10 weeks of endurance training did not induce changes in FA, but the lack of morphological changes from END indirectly support the fact that fiber hypertrophy and FA are interrelated.


Assuntos
Adaptação Fisiológica , Fibras Musculares Esqueléticas/citologia , Força Muscular , Educação Física e Treinamento/métodos , Músculo Quadríceps/anatomia & histologia , Músculo Quadríceps/fisiologia , Treinamento Resistido , Adulto , Ciclismo/fisiologia , Exercício Físico/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Contração Muscular , Consumo de Oxigênio , Músculo Quadríceps/diagnóstico por imagem , Distribuição Aleatória , Ultrassonografia , Adulto Jovem
17.
Transl Sports Med ; 2022: 9065923, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38655160

RESUMO

Recent years have seen growing scholarly interest in female physiology in general. Moreover, particular attention has been devoted to how concentrations of female sex hormones vary during the menstrual cycle and menopausal transition and how hormonal contraception and hormonal therapy influence skeletal muscle tissue. While much effort has been paid to macro outcomes, such as muscle function or mass, rather less attention has been paid to mechanistic work that may help explain the underlying mechanism through which sex hormones regulate skeletal muscle tissue. Evidence from animal studies shows a strong relationship between the female sex hormone estrogen and satellite cells (SCs), a population of muscle stem cells involved in skeletal muscle regulation. A few human studies investigating this relationship have been published only recently. Thus, the purpose of this study was to bring an updated review on female sex hormones and their role in SC regulation. First, we describe how SCs regulate skeletal muscle maintenance and repair and introduce sex hormone signaling within the muscle. Second, we present evidence from animal studies elucidating how estrogen deficiency and supplementation influence SCs. Third, we present results from investigations from human trials including women whose concentrations of female hormones differ due to menopause, hormone therapy, hormonal contraceptives, and the menstrual cycle. Finally, we discuss research and methodological recommendations for future studies aiming at elucidating the link between female sex hormones and SCs with respect to aging and training.

18.
JCI Insight ; 7(19)2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-35998039

RESUMO

BACKGROUNDDuring aging, there is a functional decline in the pool of muscle stem cells (MuSCs) that influences the functional and regenerative capacity of skeletal muscle. Preclinical evidence has suggested that nicotinamide riboside (NR) and pterostilbene (PT) can improve muscle regeneration, e.g., by increasing MuSC function. The objective of this study was to investigate if supplementation with NR and PT (NRPT) promotes skeletal muscle regeneration after muscle injury in elderly individuals by improved recruitment of MuSCs.METHODSThirty-two elderly individuals (55-80 years of age) were randomized to daily supplementation with either NRPT (1,000 mg NR and 200 mg PT) or matched placebo. Two weeks after initiation of supplementation, skeletal muscle injury was induced by electrically induced eccentric muscle work. Skeletal muscle biopsies were obtained before, 2 hours after, and 2, 8, and 30 days after injury.RESULTSA substantial skeletal muscle injury was induced by the protocol and associated with release of myoglobin and creatine kinase, muscle soreness, tissue edema, and a decrease in muscle strength. MuSC content, proliferation, and cell size revealed a large demand for recruitment after injury, but this was not affected by NRPT. Furthermore, histological analyses of muscle fiber area, central nuclei, and embryonic myosin heavy chain showed no NRPT supplementation effect.CONCLUSIONDaily supplementation with 1,000 mg NR and 200 mg PT is safe but does not improve recruitment of the MuSC pool or other measures of muscle recovery in response to injury or subsequent regeneration in elderly individuals.TRIAL REGISTRATIONClinicalTrials.gov NCT03754842.FUNDINGNovo Nordisk Foundation (NNF17OC0027242) and Novo Nordisk Foundation CBMR.


Assuntos
Doenças Musculares , Cadeias Pesadas de Miosina , Idoso , Creatina Quinase Forma MM , Suplementos Nutricionais , Humanos , Músculo Esquelético , Mioglobina/farmacologia , Niacinamida/análogos & derivados , Compostos de Piridínio , Estilbenos
20.
Mol Ther Nucleic Acids ; 24: 403-415, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-33868784

RESUMO

CRISPR gene therapy is one promising approach for treatment of Duchenne muscular dystrophy (DMD), which is caused by a large spectrum of mutations in the dystrophin gene. To broaden CRISPR gene editing strategies for DMD treatment, we report the efficient restoration of dystrophin expression in induced myotubes by SpCas9 and dual guide RNAs (gRNAs). We first sequenced 32 deletion junctions generated by this editing method and revealed that non-homologous blunt-end joining represents the major indel type. Based on this predictive repair outcome, efficient in-frame deletion of a part of DMD exon 51 was achieved in HEK293T cells with plasmids expressing SpCas9 and dual gRNAs. More importantly, we further corrected a frameshift mutation in human DMD (exon45del) fibroblasts with SpCas9-dual gRNA ribonucleoproteins. The edited DMD fibroblasts were transdifferentiated into myotubes by lentiviral-mediated overexpression of a human MYOD transcription factor. Restoration of DMD expression at both the mRNA and protein levels was confirmed in the induced myotubes. With further development, the combination of SpCas9-dual gRNA-corrected DMD patient fibroblasts and transdifferentiation may provide a valuable therapeutic strategy for DMD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA