Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36616932

RESUMO

Hockey skating objective assessment can help coaches detect players' performance drop early and avoid fatigue-induced injuries. This study aimed to calculate and experimentally validate the 3D angles of lower limb joints of hockey skaters obtained by inertial measurement units and explore the effectiveness of the on-ice distinctive features measured using these wearable sensors in differentiating low- and high-calibre skaters. Twelve able-bodied individuals, six high-calibre and six low-calibre skaters, were recruited to skate forward on a synthetic ice surface. Five IMUs were placed on their dominant leg and pelvis. The 3D lower-limb joint angles were obtained by IMUs and experimentally validated against those obtained by a motion capture system with a maximum root mean square error of 5 deg. Additionally, among twelve joint angle-based distinctive features identified in other on-ice studies, only three were significantly different (p-value < 0.05) between high- and low-calibre skaters in this synthetic ice experiment. This study thus indicated that skating on synthetic ice alters the skating patterns such that the on-ice distinctive features can no longer differentiate between low- and high-calibre skating joint angles. This wearable technology has the potential to help skating coaches keep track of the players' progress by assessing the skaters' performance, wheresoever.


Assuntos
Hóquei , Dispositivos Eletrônicos Vestíveis , Humanos , Fenômenos Biomecânicos , Gelo , Hóquei/lesões , Extremidade Inferior
2.
Sci Rep ; 14(1): 1351, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228684

RESUMO

Sentinel lymph node (SLN) biopsy is the standard surgical approach to detect lymph node metastasis in breast cancer. Machine learning is a novel tool that provides better accuracy for predicting positive SLN involvement in breast cancer patients. This study obtained data from 2890 surgical cases of breast cancer patients from two referral hospitals in Iran from 2000 to 2021. Patients whose SLN involvement status was identified were included in our study. The dataset consisted of preoperative features, including patient features, gestational factors, laboratory data, and tumoral features. In this study, TabNet, an end-to-end deep learning model, was proposed to predict SLN involvement in breast cancer patients. We compared the accuracy of our model with results from logistic regression analysis. A total of 1832 patients with an average age of 51 ± 12 years were included in our study, of which 697 (25.5%) had SLN involvement. On average, the TabNet model achieved an accuracy of 75%, precision of 81%, specificity of 70%, sensitivity of 87%, and AUC of 0.74, while the logistic model demonstrated an accuracy of 70%, precision of 73%, specificity of 65%, sensitivity of 79%, F1 score of 73%, and AUC of 0.70 in predicting the SLN involvement in patients. Vascular invasion, tumor size, core needle biopsy pathology, age, and FH had the most contributions to the TabNet model. The TabNet model outperformed the logistic regression model in all metrics, indicating that it is more effective in predicting SLN involvement in breast cancer patients based on preoperative data.


Assuntos
Neoplasias da Mama , Humanos , Adulto , Pessoa de Meia-Idade , Feminino , Metástase Linfática/patologia , Neoplasias da Mama/cirurgia , Neoplasias da Mama/patologia , Biópsia de Linfonodo Sentinela , Linfonodos/patologia , Aprendizado de Máquina , Excisão de Linfonodo , Axila/patologia
3.
PLoS One ; 18(2): e0281778, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36800355

RESUMO

One of the main factors in controlling infectious diseases such as COVID-19 is to prevent touching preoral and prenasal regions. Face touching is a habitual behaviour that occurs frequently. Studies showed that people touch their faces 23 times per hour on average. A contaminated hand could transmit the infection to the body by a facial touch. Since controlling this spontaneous habit is not easy, this study aimed to develop and validate a technology to detect and monitor face touch using dynamic time warping (DTW) and KNN (k-nearest neighbours) based on a wrist-mounted inertial measurement unit (IMU) in a controlled environment and natural environment trials. For this purpose, eleven volunteers were recruited and their hand motions were recorded in controlled and natural environment trials using a wrist-mounted IMU. Then the sensitivity, precision, and accuracy of our developed technology in detecting the face touch were evaluated. It was observed that the sensitivity, precision, and accuracy of the DTW-KNN classifier were 91%, 97%, and 85% in controlled environment trials and 79%, 92%, and 79% in natural environment trials (daily life). In conclusion, a wrist-mounted IMU, widely available in smartwatches, could detect the face touch with high sensitivity, precision, and accuracy and can be used as an ambulatory system to detect and monitor face touching as a high-risk habit in daily life.


Assuntos
COVID-19 , Percepção do Tato , Humanos , Tato , COVID-19/prevenção & controle , Mãos , Punho
4.
Sci Rep ; 12(1): 22280, 2022 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-36566292

RESUMO

Ice hockey is a dynamic and competitive sport that requires a high level of neuromuscular and cardiovascular function. An objective assessment of skating helps coaches monitor athletes' performance during training sessions and matches. This study aimed to estimate the temporal and spatial parameters of skating by proposing an optimized configuration of wearable inertial measurement units (IMUs) and validating the system compared to in-lab reference systems. Ten participants were recruited to skate on a 14 m synthetic ice surface built in a motion-capture lab. Eight original event detection methods and three more adopted from gait analysis studies were implemented to detect blades-off and skate-strikes. These temporal events were detected with high accuracy and precision using skate-mounted IMUs. Also, four novel stride length estimation methods were developed to correct the estimated skaters' position using IMUs' readouts. The stride time, contact time, stride length, and stride velocity were obtained with relative errors of 3 ± 3%, 4 ± 3%, 2 ± 6%, and 2 ± 8%, respectively. This study showed that the wearable IMUs placed on skates and pelvis enables the estimation of temporal and spatial parameters of skating with high accuracy and precision, which could help coaches monitor skaters' performance in training.


Assuntos
Desempenho Atlético , Hóquei , Patinação , Dispositivos Eletrônicos Vestíveis , Humanos
5.
Sports Biomech ; : 1-18, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35119345

RESUMO

The countermovement vertical jump height, flight time, and jump duration are used to assess athletic performance. Force-plate and motion-capture cameras are used to estimate these parameters, yet, their application is limited to dedicated lab environments. Despite the potential of inertial measurement units (IMU) for estimating the jump height, their accuracy has not been validated. This study investigates the accuracy of our proposed method to estimate the jump height using a sacrum-mounted IMU, during countermovement jumping. Eleven individuals performed four jumps each. To obtain the jump height, we transformed the IMU readouts into anatomical planes, and double-integrated the vertical acceleration after correction for zero velocity and vertical displacement. The accuracy of jump height obtained by IMU was compared to force-plate and motion-capture cameras during jumps without arm swing (mean error (standard deviation) of 0.3(2.2) cm and 1.0(3.0) cm, and correlation coefficient of 0.83 and 0.82, respectively) and during jumps with arm swing (-1.1(2.1) cm and 0.5(1.9) cm, and 0.92 and 0.89). The correlation coefficients were high, and the errors were comparable to the difference between the jump height obtained by force-plate and cameras. Therefore, a sacrum-mounted IMU can be recommended for in-field assessment of countermovement jump with and without arm swing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA