Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Toxicol Appl Pharmacol ; 482: 116784, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38070752

RESUMO

Potential genotoxicity and carcinogenicity of carbon nanotubes (CNT), as well as the underlying mechanisms, remains a pressing topic. The study aimed to evaluate and compare the genotoxic effect and mechanisms of DNA damage under exposure to different types of CNT. Immortalized human cell lines of respiratory origin BEAS-2B, A549, MRC5-SV40 were exposed to three types of CNT: MWCNT Taunit-M, pristine and purified SWCNT TUBALL™ at concentrations in the range of 0.0006-200 µg/ml. Data on the CNT content in the workplace air were used to calculate the lower concentration limit. The genotoxic potential of CNTs was investigated at non-cytotoxic concentrations using a DNA comet assay. We explored reactive oxygen species (ROS) formation, direct genetic material damage, and expression of a profibrotic factor TGFB1 as mechanisms related to genotoxicity upon CNT exposure. An increase in the number of unstable DNA regions was observed at a subtoxic concentration of CNT (20 µg/ml), with no genotoxic effects at concentrations corresponding to industrial exposures being found. While the three test articles of CNTs exhibited comparable genotoxic potential, their mechanisms appeared to differ. MWCNTs were found to penetrate the nucleus of respiratory cells, potentially interacting directly with genetic material, as well as to enhance ROS production and TGFB1 gene expression. For A549 and MRC5-SV40, genotoxicity depended mainly on MWCNT concentration, while for BEAS-2B - on ROS production. Mechanisms of SWCNT genotoxicity were not so obvious. Oxidative stress and increased expression of profibrotic factors could not fully explain DNA damage under SWCNT exposure, and other mechanisms might be involved.


Assuntos
Nanotubos de Carbono , Humanos , Nanotubos de Carbono/toxicidade , Espécies Reativas de Oxigênio , Dano ao DNA , Linhagem Celular , DNA , Sobrevivência Celular
2.
Carbon N Y ; 178: 563-572, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37206955

RESUMO

Pulmonary exposure to multi-walled carbon nanotubes (MWCNTs) causes inflammation and fibrosis. Our previous work has shown that industrially produced MWCNTs trigger specific changes in gene expression in the lungs of exposed animals. To elucidate whether epigenetic effects play a role for these gene expression changes, we performed whole genome bisulphite sequencing to assess DNA methylation patterns in the lungs 56 days after exposure to MWCNTs. Lung tissues were also evaluated with respect to histopathological changes and cytokine profiling of bronchoalveolar lavage (BAL) fluid was conducted using a multi-plex array. Integrated analysis of transcriptomics data and DNA methylation data revealed concordant changes in gene expression. Functional analysis showed that the muscle contraction, immune system/inflammation, and extracellular matrix pathways were the most affected pathways. Taken together, the present study revealed that MWCNTs exert epigenetic effects in the lungs of exposed animals, potentially driving the subsequent gene expression changes.

3.
Toxicol Appl Pharmacol ; 390: 114898, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31978390

RESUMO

Pulmonary exposure to multi-walled carbon nanotubes (MWCNT) causes inflammation, fibroproliferation, immunotoxicity, and systemic responses in rodents. However, the search for representative biomarkers of exposure is an ongoing endeavor. Whole blood gene expression profiling is a promising new approach for the identification of novel disease biomarkers. We asked if the whole blood transcriptome reflects pathology-specific changes in lung gene expression caused by MWCNT. To answer this question, we performed mRNA sequencing analysis of the whole blood and lung in mice administered MWCNT or vehicle solution via pharyngeal aspiration and sacrificed 56 days later. The pattern of lung mRNA expression as determined using Ingenuity Pathway Analysis (IPA) was indicative of continued inflammation, immune cell trafficking, phagocytosis, and adaptive immune responses. Simultaneously, innate immunity-related transcripts (Plunc, Bpifb1, Reg3g) and cancer-related pathways were downregulated. IPA analysis of the differentially expressed genes in the whole blood suggested increased hematopoiesis, predicted activation of cancer/tumor development pathways, and atopy. There were several common upregulated genes between whole blood and lungs, important for adaptive immune responses: Cxcr1, Cd72, Sharpin, and Slc11a1. Trim24, important for TH2 cell effector function, was downregulated in both datasets. Hla-dqa1 mRNA was upregulated in the lungs and downregulated in the blood, as was Lilrb4, which controls the reactivity of immune response. "Cancer" disease category had opposing activation status in the two datasets, while the only commonality was "Hypersensitivity". Transcriptome changes occurring in the lungs did not produce a completely replicable pattern in whole blood; however, specific systemic responses may be shared between transcriptomic profiles.


Assuntos
Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Nanotubos de Carbono/toxicidade , Transcriptoma/efeitos dos fármacos , Animais , Biomarcadores , Feminino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Exp Lung Res ; 43(8): 311-326, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29140132

RESUMO

PURPOSE OF THE STUDY: A number of in vivo studies have shown that pulmonary exposure to carbon nanotubes (CNTs) may lead to an acute local inflammatory response, pulmonary fibrosis, and granulomatous lesions. Among the factors that play direct roles in initiation and progression of fibrotic processes are epithelial-mesenchymal transition and myofibroblasts recruitment/differentiation, both mediated by transforming growth factor-ß1 (TGF-ß1). Yet, other contributors to TGF-ß1 associated signaling, such as osteopontin (OPN) has not been fully investigated. MATERIALS AND METHODS: OPN-knockout female mice (OPN-KO) along with their wild-type (WT) counterparts were exposed to single-walled carbon nanotubes (SWCNT) (40 µg/mouse) via pharyngeal aspiration and fibrotic response was assessed 1, 7, and 28 days post-exposure. Simultaneously, RAW 264.7 and MLE-15 cells were treated with SWCNT (24 hours, 6 µg/cm2 to 48 µg/cm2) or bleomycin (0.1 µg/ml) in the presence of OPN-blocking antibody or isotype control, and TGF-ß1 was measured in supernatants. RESULTS AND CONCLUSIONS: Diminished lactate dehydrogenase activity at all time points, along with less pronounced neutrophil influx 24 h post-exposure, were measured in broncho-alveolar lavage (BAL) of OPN-KO mice compared to WT. Pro-inflammatory cytokine release (IL-6, TNF-α, MCP-1) was reduced. A significant two-fold increase of TGF-ß1 was found in BAL of WT mice at 7 days, while TGF-ß1 levels in OPN-KO animals remained unaltered. Histological examination revealed marked decrease in granuloma formation and less collagen deposition in the lungs of OPN-KO mice compared to WT. RAW 264.7 but not MLE-15 cells exposed to SWCNT and bleomycin had significantly less TGF-ß1 released in the presence of OPN-blocking antibody. We believe that OPN is important in initiating the cellular mechanisms that produce an overall pathological response to SWCNT and it may act upstream of TGF-ß1. Further investigation to understand the mechanistic details of such interactions is critical to predict outcomes of pulmonary exposure to CNT.


Assuntos
Nanotubos de Carbono/efeitos adversos , Osteopontina/fisiologia , Fibrose Pulmonar/etiologia , Fator de Crescimento Transformador beta1/fisiologia , Animais , Anticorpos/farmacologia , Lavagem Broncoalveolar , Linhagem Celular , Citocinas/metabolismo , Feminino , Camundongos , Camundongos Knockout , Osteopontina/genética , Osteopontina/imunologia , Células RAW 264.7 , Fator de Crescimento Transformador beta1/análise , Fator de Crescimento Transformador beta1/efeitos dos fármacos
5.
Toxicol Appl Pharmacol ; 299: 125-31, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26902652

RESUMO

Multi-walled carbon nanotubes (MWCNT) with their unique physico-chemical properties offer numerous technological advantages and are projected to drive the next generation of manufacturing growth. As MWCNT have already found utility in different industries including construction, engineering, energy production, space exploration and biomedicine, large quantities of MWCNT may reach the environment and inadvertently lead to human exposure. This necessitates the urgent assessment of their potential health effects in humans. The current study was carried out at NanotechCenter Ltd. Enterprise (Tambov, Russia) where large-scale manufacturing of MWCNT along with relatively high occupational exposure levels was reported. The goal of this small cross-sectional study was to evaluate potential biomarkers during occupational exposure to MWCNT. All air samples were collected at the workplaces from both specific areas and personal breathing zones using filter-based devices to quantitate elemental carbon and perform particle analysis by TEM. Biological fluids of nasal lavage, induced sputum and blood serum were obtained from MWCNT-exposed and non-exposed workers for assessment of inflammatory and fibrotic markers. It was found that exposure to MWCNTs caused significant increase in IL-1ß, IL6, TNF-α, inflammatory cytokines and KL-6, a serological biomarker for interstitial lung disease in collected sputum samples. Moreover, the level of TGF-ß1 was increased in serum obtained from young exposed workers. Overall, the results from this study revealed accumulation of inflammatory and fibrotic biomarkers in biofluids of workers manufacturing MWCNTs. Therefore, the biomarkers analyzed should be considered for the assessment of health effects of occupational exposure to MWCNT in cross-sectional epidemiological studies.


Assuntos
Nanotubos de Carbono/toxicidade , Exposição Ocupacional/efeitos adversos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Adulto , Biomarcadores/sangue , Biomarcadores/metabolismo , Citocinas/sangue , Citocinas/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fibrose Pulmonar/diagnóstico , Escarro/efeitos dos fármacos , Escarro/metabolismo , Adulto Jovem
6.
PLoS One ; 11(3): e0150628, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26930275

RESUMO

BACKGROUND: As the application of carbon nanotubes (CNT) in consumer products continues to rise, studies have expanded to determine the associated risks of exposure on human and environmental health. In particular, several lines of evidence indicate that exposure to multi-walled carbon nanotubes (MWCNT) could pose a carcinogenic risk similar to asbestos fibers. However, to date the potential markers of MWCNT exposure are not yet explored in humans. METHODS: In the present study, global mRNA and ncRNA expression profiles in the blood of exposed workers, having direct contact with MWCNT aerosol for at least 6 months (n = 8), were compared with expression profiles of non-exposed (n = 7) workers (e.g., professional and/or technical staff) from the same manufacturing facility. RESULTS: Significant changes in the ncRNA and mRNA expression profiles were observed between exposed and non-exposed worker groups. An integrative analysis of ncRNA-mRNA correlations was performed to identify target genes, functional relationships, and regulatory networks in MWCNT-exposed workers. The coordinated changes in ncRNA and mRNA expression profiles revealed a set of miRNAs and their target genes with roles in cell cycle regulation/progression/control, apoptosis and proliferation. Further, the identified pathways and signaling networks also revealed MWCNT potential to trigger pulmonary and cardiovascular effects as well as carcinogenic outcomes in humans, similar to those previously described in rodents exposed to MWCNTs. CONCLUSION: This study is the first to investigate aberrant changes in mRNA and ncRNA expression profiles in the blood of humans exposed to MWCNT. The significant changes in several miRNAs and mRNAs expression as well as their regulatory networks are important for getting molecular insights into the MWCNT-induced toxicity and pathogenesis in humans. Further large-scale prospective studies are necessary to validate the potential applicability of such changes in mRNAs and miRNAs as prognostic markers of MWCNT exposures in humans.


Assuntos
Nanotubos de Carbono/efeitos adversos , RNA Mensageiro/metabolismo , RNA não Traduzido/metabolismo , Transcriptoma/efeitos dos fármacos , Adolescente , Adulto , Feminino , Humanos , Masculino , Microscopia Eletrônica de Transmissão , Pessoa de Meia-Idade , Exposição Ocupacional/efeitos adversos , RNA Mensageiro/efeitos dos fármacos , RNA não Traduzido/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA