Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 16(7): 15852-71, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-26184178

RESUMO

Chromium (Cr) is an abundant heavy metal in nature, toxic to living organisms. As it is widely used in industry and leather tanning, it may accumulate locally at high concentrations, raising concerns for human health hazards. Though Cr effects have extensively been investigated in animals and mammals, in plants they are poorly understood. The present study was then undertaken to determine the ultrastructural malformations induced by hexavalent chromium [Cr(VI)], the most toxic form provided as 100 µM potassium dichromate (K2Cr2O7), in the root tip cells of the model plant Arabidopsis thaliana. A concentration-dependent decrease of root growth and a time-dependent increase of dead cells, callose deposition, hydrogen peroxide (H2O2) production and peroxidase activity were found in Cr(VI)-treated seedlings, mostly at the transition root zone. In the same zone, nuclei remained ultrastructurally unaffected, but in the meristematic zone some nuclei displayed bulbous outgrowths or contained tubular structures. Endoplasmic reticulum (ER) was less affected under Cr(VI) stress, but Golgi bodies appeared severely disintegrated. Moreover, mitochondria and plastids became spherical and displayed translucent stroma with diminished internal membranes, but noteworthy is that their double-membrane envelopes remained structurally intact. Starch grains and electron dense deposits occurred in the plastids. Amorphous material was also deposited in the cell walls, the middle lamella and the vacuoles. Some vacuoles were collapsed, but the tonoplast appeared integral. The plasma membrane was structurally unaffected and the cytoplasm contained opaque lipid droplets and dense electron deposits. All electron dense deposits presumably consisted of Cr that is sequestered from sensitive sites, thus contributing to metal tolerance. It is concluded that the ultrastructural changes are reactive oxygen species (ROS)-correlated and the malformations observed are organelle specific.


Assuntos
Arabidopsis/metabolismo , Cromo/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Parede Celular/efeitos dos fármacos , Parede Celular/ultraestrutura , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Peróxido de Hidrogênio/metabolismo , Microscopia Eletrônica de Transmissão , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Peroxidases/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Vacúolos/efeitos dos fármacos , Vacúolos/ultraestrutura
2.
Physiol Plant ; 147(2): 169-80, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22607451

RESUMO

Hexavalent chromium [Cr(VI)] is an accumulating environmental pollutant due to anthropogenic activities, toxic for humans, animals and plants. Therefore, the effects of Cr(VI) on dividing root cells of lentil (Lens culinaris) were investigated by tubulin immunofluorescence and DNA staining. In Cr(VI)-treated roots, cell divisions were perturbed, the chromosomes formed irregular aggregations, multinucleate cells were produced and tubulin clusters were entrapped within the nuclei. All cell cycle-specific microtubule (MT) arrays were affected, indicating a stabilizing effect of Cr(VI) on the MTs of L. culinaris. Besides, a time- and concentration-dependent gradual increase of acetylated α-tubulin, an indicator of MT stabilization, was observed in Cr(VI)-treated roots by both immunofluorescence and western blotting. Evidence is also provided that reactive oxygen species (ROS) caused by Cr(VI), determined with the specific marker dichlorofluorescein, may be responsible for MT stabilization. Combined treatments with Cr(VI) and oryzalin revealed that Cr(VI) overcomes the depolymerizing ability of oryzalin, as it does experimentally introduced hydrogen peroxide, further supporting its stabilizing effect. In conclusion, it is suggested that the mitotic aberrations caused by Cr(VI) in L. culinaris root cells may be the result of MT stabilization rather than depolymerization, which consequently disturbs MT dynamics and their related functions.


Assuntos
Cromo/toxicidade , Lens (Planta)/citologia , Meristema/citologia , Mitose/efeitos dos fármacos , Células Vegetais/efeitos dos fármacos , Acetilação , Dinitrobenzenos/farmacologia , Peróxido de Hidrogênio/farmacologia , Lens (Planta)/efeitos dos fármacos , Meristema/efeitos dos fármacos , Meristema/crescimento & desenvolvimento , Microtúbulos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Sulfanilamidas/farmacologia , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA