Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Ecotoxicol Environ Saf ; 272: 116031, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38309236

RESUMO

Nanosized titanium dioxide (nTiO2) is widely used in products, warranting its discharge from various sources into surface water bodies. However, nTiO2 co-occurs in surface waters with other contaminants, such as metals. Studies with nTiO2 and metals have indicated that the presence of natural organic matter (NOM) can mitigate their toxicity to aquatic organisms. In addition, "aging" of nTiO2 can affect toxicity. However, it is a research challenge, particularly when addressing sublethal responses from dietary exposure over multiple generations. We, therefore exposed the alga Desmodesmus subspicatus to nTiO2 (at concentrations of 0.0, 0.6 and 3.0 mg nTiO2/L) in nutrient medium aged for 0 or 3 days with copper (Cu) at concentrations of 0 and 116 µg Cu/L and with NOM at concentrations equivalent to 0 and 8 mg total organic carbon (TOC) per litre. Subsequently, the exposed alga was fed to Daphnia magna for 23 days over two generations and survival, reproduction and body length were assessed as endpoints of toxicity. In parallel, Cu accumulation and depuration from D. magna were measured. The results indicate that the reproduction of D. magna was the most sensitive parameter in this study, being reduced by 30% (at both parental (F0) and filial (F1) generations) and 50% (at F0 but not F1) due to the dietary Cu exposure in combination with nTiO2 for 0 and 3 days aging, respectively. There was no relationship between the effects observed on reproduction and Cu body burden in D. magna. Moreover, D. magna from the F1 generation showed an adaptive response to Cu in the treatment with 3.0 mg nTiO2/L aged for 3 days, potentially due to epigenetic inheritance. Unexpectedly, the presence of NOM hardly changed the observed effects, pointing towards the function of algal exopolymeric substances or intracellular organic matter, rendering the NOM irrelevant. Ultimately, the results indicate that the transferability of the impacts observed during the F0 to the responses in the F1 generation is challenging due to opposite effect directions. Additional mechanistic studies are needed to unravel this inconsistency in the responses between generations and to support the development of reliable effect models.


Assuntos
Nanopartículas , Titânio , Poluentes Químicos da Água , Animais , Cobre , Daphnia , Daphnia magna , Exposição Dietética , Nanopartículas/toxicidade , Reprodução , Poluentes Químicos da Água/toxicidade
2.
Microb Ecol ; 86(4): 2674-2686, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37505287

RESUMO

Heterotrophic microbial decomposers colonize submerged leaf litter in close spatial proximity to periphytic algae that exude labile organic carbon during photosynthesis. These exudates are conjectured to affect microbial decomposers' abundance, resulting in a stimulated (positive priming) or reduced (negative priming) leaf litter decomposition. Yet, the occurrence, direction, and intensity of priming associated with leaf material of differing recalcitrance remains poorly tested. To assess priming, we submerged leaf litter of differing recalcitrance (Alnus glutinosa [alder; less recalcitrant] and Fagus sylvatica [beech; more recalcitrant]) in microcosms and quantified bacterial, fungal, and diatom abundance as well as leaf litter decomposition over 30 days in absence and presence of light. Diatoms did not affect beech decomposition but reduced alder decomposition by 20% and alder-associated fungal abundance by 40% in the treatments including all microbial groups and light, thus showing negative priming. These results suggest that alder-associated heterotrophs acquired energy from diatom exudates rather than from leaf litter. Moreover, it is suggested that these heterotrophs have channeled energy to alternative (reproductive) pathways that may modify energy and nutrient availability for the remaining food web and result in carbon pools protected from decomposition in light-exposed stream sections.


Assuntos
Diatomáceas , Diatomáceas/metabolismo , Fungos/metabolismo , Rios , Folhas de Planta/microbiologia , Carbono/metabolismo , Ecossistema
3.
J Environ Manage ; 345: 118746, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37597368

RESUMO

Surface waters are under increasing pressure due to human activities, such as nutrient emissions from wastewater treatment plants (WWTPs). Using the retention of nitrogen (N) released from WWTPs as a proxy, we assessed the contribution of biofilms grown on inorganic and organic substrates to the self-cleaning capacity of second-order streams within the biosphere reserve Vosges du Nord/Palatinate forest (France/Germany). The uptake of N from anthropogenic sources, which is enriched with the heavy isotope 15N, into biofilms was assessed up- and downstream of WWTPs after five weeks of substrate deployment. Biofilms at downstream sites showed a significant positive linear relationship between δ15N and the relative contribution of wastewater to the streams' discharge. Furthermore, δ15N substantially increased in areas affected by WWTP effluent (∼8.5‰ and ∼7‰ for inorganic and organic substrate-associated biofilms, respectively) and afterwards declined with increasing distance to the WWTP effluent, approaching levels of upstream sections. The present study highlights that biofilms contribute to nutrient retention and likely the self-cleaning capacity of streams. This function seems, however, to be limited by the fact that biofilms are restricted in their capacity to process excessive N loads with large differences between individual reaches (e.g., δ15N: -3.25 to 12.81‰), influenced by surrounding conditions (e.g., land use) and modulated through climatic factors and thus impacted by climate change. Consequently, the impact of WWTPs located close to the source of a stream are dampened by the biofilms' capacity to retain N only to a minor share and suggest substantial N loads being transported downstream.


Assuntos
Florestas , Águas Residuárias , Humanos , Nitrogênio/análise , Biofilmes , França , Monitoramento Ambiental
4.
Bull Environ Contam Toxicol ; 110(5): 92, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37160617

RESUMO

Microbially-mediated leaf litter decomposition is a critical ecosystem function in running waters within forested areas, which can be affected by fungicides. However, fungicide effects on leaf litter decomposition have been investigated almost exclusively with black alder leaves, a leaf species with traits favourable to consumers (i.e., low recalcitrance and high nutrient content). At the same time, little is known about fungicide effects on microbial colonisation and decomposition of other leaf species with less favourable traits. In this 21 day lasting study, we explore the effects of increasing fungicide sum concentrations (0-3000 µg/L) on microbial colonisation and decomposition of three leaf species (black alder, Norway maple and European beech) differing in terms of recalcitrance and nutrient content. Leaf litter decomposition rate, leaf-associated fungal biomass and bacterial density were quantified to observe potential effects at the functional level. Beech, as the species with the least favourable leaf traits, showed a substantially lower decomposition rate (50%) in absence of fungicides than alder and maple. In the presence of high fungicide concentrations (300-3000 µg/L), beech showed a concentration-related decrease not only in microbial leaf litter decomposition but also fungal biomass. This suggests that favourable traits of leaf litter (as for alder and maple) enable leaf-associated microorganisms to acquire leaf-bound energy more easily to withstand potential effects induced by fungicide exposure. Our results indicate the need to deepen our understanding on how leaf species' traits interact with the impact of chemical stressors on the leaf decomposition activity of microbial communities.


Assuntos
Fungicidas Industriais , Microbiota , Fungicidas Industriais/toxicidade , Biomassa , Florestas , Folhas de Planta
5.
Environ Sci Technol ; 55(21): 14699-14709, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34677949

RESUMO

Herbicides are well known for unintended effects on freshwater periphyton communities. Large knowledge gaps, however, exist regarding indirect herbicide impacts on primary consumers through changes in the quality of periphyton as a food source (i.e., diet-related effects). To address this gap, the grazer Physella acuta (Gastropoda) was fed for 21 days with periphyton that grew for 15 days in the presence or absence of the herbicide diuron (8 µg/L) to quantify changes in the feeding rate, growth rate, and energy storage (neutral lipid fatty acids; NLFAs) of P. acuta. Periphyton biomass, cell viability, community structure, and FAs served as proxies for food quality that support a mechanistic interpretation of the grazers' responses. Diuron changed the algae periphyton community and fatty acid profiles, indicating alterations in the food quality, which could explain differences in the snails' feeding rate compared to the control. While the snails' growth rate was, despite an effect size of 55%, not statistically significantly changed, NLFA profiles of P. acuta were altered. These results indicate that herbicides can change the food quality of periphyton by shifts in the algae composition, which may affect the physiology of grazers.


Assuntos
Herbicidas , Perifíton , Animais , Biomassa , Diurona , Herbicidas/toxicidade , Caramujos
6.
Glob Chang Biol ; 26(2): 629-641, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31465582

RESUMO

Streams and river networks are increasingly recognized as significant sources for the greenhouse gas nitrous oxide (N2 O). N2 O is a transformation product of nitrogenous compounds in soil, sediment and water. Agricultural areas are considered a particular hotspot for emissions because of the large input of nitrogen (N) fertilizers applied on arable land. However, there is little information on N2 O emissions from forest streams although they constitute a major part of the total stream network globally. Here, we compiled N2 O concentration data from low-order streams (~1,000 observations from 172 stream sites) covering a large geographical gradient in Sweden from the temperate to the boreal zone and representing catchments with various degrees of agriculture and forest coverage. Our results showed that agricultural and forest streams had comparable N2 O concentrations of 1.6 ± 2.1 and 1.3 ± 1.8 µg N/L, respectively (mean ± SD) despite higher total N (TN) concentrations in agricultural streams (1,520 ± 1,640 vs. 780 ± 600 µg N/L). Although clear patterns linking N2 O concentrations and environmental variables were difficult to discern, the percent saturation of N2 O in the streams was positively correlated with stream concentration of TN and negatively correlated with pH. We speculate that the apparent contradiction between lower TN concentration but similar N2 O concentrations in forest streams than in agricultural streams is due to the low pH (<6) in forest soils and streams which affects denitrification and yields higher N2 O emissions. An estimate of the N2 O emission from low-order streams at the national scale revealed that ~1.8 × 109  g N2 O-N are emitted annually in Sweden, with forest streams contributing about 80% of the total stream emission. Hence, our results provide evidence that forest streams can act as substantial N2 O sources in the landscape with 800 × 109  g CO2 -eq emitted annually in Sweden, equivalent to 25% of the total N2 O emissions from the Swedish agricultural sector.


Assuntos
Florestas , Óxido Nitroso , Fertilizantes , Solo , Suécia
7.
Bull Environ Contam Toxicol ; 102(3): 303-309, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30706079

RESUMO

The leaf-shredding crustacean Hyalella azteca, which is indigenous to Northern and Central America, is used to assess environmental risks associated with (metal-)contaminated sediments and to propose sediment quality standards also in Europe. Yet, it is unknown if H. azteca is protective for European crustacean shredders. We thus compared the sensitivity of H. azteca with that of the European species Asellus aquaticus and Gammarus fossarum towards copper- and cadmium-contaminated sediments (prepared according to OECD 218) under laboratory conditions employing mortality and leaf consumption as endpoints. H. azteca either reacted approximately fourfold more sensitive than the most tolerant tested species (as for cadmium) or its sensitivity was only 1.6 times lower than the highest sensitivity determined (as for copper), which should be covered by safety factors applied during risk assessments. Therefore, the results for the sediment type and the two heavy metals tested during the present study in combination with the existence of standardized testing protocols, their ease of culture, and short generation time, suggest H. azteca as suitable crustacean model shredder for assessing the toxicity of sediment-associated metals in Europe.


Assuntos
Anfípodes/efeitos dos fármacos , Cádmio/toxicidade , Cobre/toxicidade , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Poluentes Químicos da Água/toxicidade , Animais , Cádmio/análise , Cobre/análise , Europa (Continente) , Isópodes/efeitos dos fármacos , Metais Pesados/análise , Metais Pesados/toxicidade , Poluentes Químicos da Água/análise
8.
Glob Chang Biol ; 24(2): e402-e415, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28787754

RESUMO

Ecosystem functions in streams (e.g., microbially mediated leaf litter breakdown) are threatened globally by the predicted agricultural intensification and its expansion into pristine areas, which is associated with increasing use of fertilizers and pesticides. However, the ecological consequences may depend on the disturbance history of microbial communities. To test this, we assessed the effects of fungicides and nutrients (four levels each) on the structural and functional resilience of leaf-associated microbial communities with differing disturbance histories (pristine vs. previously disturbed) in a 2 × 4 × 4-factorial design (n = 6) over 21 days. Microbial leaf breakdown was assessed as a functional variable, whereas structural changes were characterized by the fungal community composition, species richness, biomass, and other factors. Leaf breakdown by the pristine microbial community was reduced by up to 30% upon fungicide exposure compared with controls, whereas the previously disturbed microbial community increased leaf breakdown by up to 85%. This significant difference in the functional response increased in magnitude with increasing nutrient concentrations. A pollution-induced community tolerance in the previously disturbed microbial community, which was dominated by a few species with high breakdown efficacies, may explain the maintained function under stress. Hence, the global pressure on pristine ecosystems by agricultural expansion is expected to cause a modification in the structure and function of heterotrophic microbial communities, with microbially mediated leaf litter breakdown likely becoming more stable over time as a consequence of fungal community adaptions.


Assuntos
Biodegradação Ambiental , Ecossistema , Fungos/efeitos dos fármacos , Fungicidas Industriais/toxicidade , Poluentes Químicos da Água/toxicidade , Agricultura , Biomassa , Fertilizantes , Fungos/fisiologia , Fungicidas Industriais/química , Folhas de Planta/metabolismo , Poluentes Químicos da Água/química
9.
Ecotoxicol Environ Saf ; 144: 107-114, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28601515

RESUMO

Damselflies form an essential part of the aquatic and terrestrial food web. Pesticides may, however, negatively affect their behavior, physiology, and survival. To assess this, a 42-day-lasting bioassay was conducted, during which damselfly larvae (Ischnura graellsii; n = 20) were repeatedly exposed to lambda-cyhalothrin (3 days at; 0, 10, 50, 250, 1250, and 6250ng LCH L-1), followed by recovery phases (4 days) in pesticide-free medium for six weeks. This exposure design was used to simulate frequent runoff events in the field. Variables related to the behavior (strikes against prey and capture success), growth, physiology (lipid content and fatty acid composition), as well as mortality were assessed throughout the experiment. The two highest LCH concentrations induced 100% mortality within the first 48h, whereas 85% of the test organisms survived 28 days under control conditions. The number of strikes against prey was not affected by LCH. In contrast, prey capture success decreased significantly (up to ~50% at 250ng LCH L-1, for instance, after the third pulse exposure) following LCH-exposures compared to the control. This difference was not observed after recovery phases, however, which did not counteract the enhanced energy demand for detoxification and defense mechanisms indicated by a lower growth rate (up to ~20%) and lipid content (up to ~30%) of damselflies at 50 and 250ng LCH L-1. In addition, two essential fatty acids (eicosapentaenoic acid and arachidonic acid) and two precursors (linolenic acid and α-linolenic acid) decreased in their concentrations upon exposure towards 250ng LCH L-1. Thus the results of this study indicate that long-term exposure towards LCH pulses can affect damselfly behavior, physiology and survival. Given the essential role of damselflies in food web dynamics, these effects may potentially translate into local population impairments with subsequent bottom-up directed effects within and across ecosystem boundaries.


Assuntos
Comportamento Animal/efeitos dos fármacos , Nitrilas/toxicidade , Odonatos/efeitos dos fármacos , Praguicidas/toxicidade , Piretrinas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Relação Dose-Resposta a Droga , Ecossistema , Larva/efeitos dos fármacos , Larva/fisiologia , Odonatos/fisiologia , Análise de Sobrevida
10.
Environ Sci Technol ; 49(2): 1173-81, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25517729

RESUMO

The level of protection provided by the present environmental risk assessment (ERA) of fungicides in the European Union for fungi is unknown. Therefore, we assessed the structural and functional implications of five fungicides with different modes of action (azoxystrobin, carbendazim, cyprodinil, quinoxyfen, and tebuconazole) individually and in mixture on communities of aquatic hyphomycetes. This is a polyphyletic group of fungi containing key drivers in the breakdown of leaf litter, governing both microbial leaf decomposition and the palatability of leaves for leaf-shredding macroinvertebrates. All fungicides impaired leaf palatability to the leaf-shredder Gammarus fossarum and caused structural changes in fungal communities. In addition, all compounds except for quinoxyfen altered microbial leaf decomposition. Our results suggest that the European Union's first-tier ERA provides sufficient protection for the tested fungicides, with the exception of tebuconazole and the mixture, while higher-tier ERA does not provide an adequate level of protection for fungicides in general. Therefore, our results show the need to incorporate aquatic fungi as well as their functions into ERA testing schemes to safeguard the integrity of aquatic ecosystems.


Assuntos
Ecossistema , Fungos/efeitos dos fármacos , Fungicidas Industriais/análise , Folhas de Planta/metabolismo , Poluentes Químicos da Água/análise , Anfípodes , Animais , Organismos Aquáticos/efeitos dos fármacos , Benzimidazóis/efeitos adversos , Carbamatos/efeitos adversos , União Europeia , Metacrilatos/efeitos adversos , Pirimidinas/efeitos adversos , Quinolinas/efeitos adversos , Medição de Risco , Estrobilurinas , Triazóis/efeitos adversos
11.
Bull Environ Contam Toxicol ; 95(4): 421-7, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26323237

RESUMO

Biofilms play a fundamental ecological role in freshwater ecosystems as they contribute to ecosystem function(s) such as autotrophic primary production, organic matter decomposition and the bottom-up directed energy transfer in the food web. The present focused review summarizes the scientific knowledge on how the roles of autotrophic and heterotrophic biofilms can be modulated as a response to chemical (i.e., pesticide) stress. We discuss how horizontal effects (alterations in the structure of biofilms) can affect the physiological fitness and life history strategy of the next trophic level (vertical effects), namely primary consumers. Since the literature indicates that heterotrophic biofilms are currently at risk as a result of pesticide stress, the protectiveness of environmental risk assessment in Europe as well as North America is questioned. By briefly outlining substantial knowledge gaps, we provide ideas on how the identified uncertainties may be empirically addressed.


Assuntos
Biofilmes/efeitos dos fármacos , Ecossistema , Água Doce/microbiologia , Praguicidas/farmacologia , Estresse Fisiológico , Poluentes Químicos da Água/farmacologia , Ecologia , Europa (Continente) , Cadeia Alimentar , Água Doce/química
12.
Sci Total Environ ; 912: 168926, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38029985

RESUMO

Arable land use and the associated application of agrochemicals can affect local freshwater communities with consequences for the entire ecosystem. For instance, the structure and function of leaf-associated microbial communities can be affected by pesticides, such as fungicides. Additionally, the leaf species on which these microbial communities grow reflects another environmental filter for community structure. These factors and their interaction may jointly modify leaves' nutritional quality for higher trophic levels. To test this assumption, we studied the structure of leaf-associated microbial communities with distinct exposure histories (pristine [P] vs vineyard run off [V]) colonising two leaf species (black alder, European beech, and a mixture thereof). By offering these differently colonised leaves as food to males and females of the leaf-shredding amphipod Gammarus fossarum (Crustacea; Amphipoda) we assessed for potential bottom-up effects. The growth rate, feeding rate, faeces production and neutral lipid fatty acid profile of the amphipod served as response variable in a 2 × 3 × 2-factorial test design over 21d. A clear separation of community history (P vs V), leaf species and an interaction between the two factors was observed for the leaf-associated aquatic hyphomycete (i.e., fungal) community. Sensitive fungal species were reduced by up to 70 % in the V- compared to P-community. Gammarus' growth rate, feeding rate and faeces production were affected by the factor leaf species. Growth was negatively affected when Gammarus were fed with beech leaves only, whereas the impact of alder and the mixture of both leaf species was sex-specific. Overall, this study highlights that leaf species identity had a more substantial impact on gammarids relative to the microbial community itself. Furthermore, the sex-specificity of the observed effects (excluding fatty acid profile, which was only measured for male) questions the procedure of earlier studies, that is using either only one sex or not being able to differentiate between males and females. However, these results need additional verification to support a reliable extrapolation.


Assuntos
Anfípodes , Fungicidas Industriais , Microbiota , Poluentes Químicos da Água , Animais , Anfípodes/fisiologia , Ecossistema , Ácidos Graxos , Água Doce , Fungicidas Industriais/toxicidade , Folhas de Planta , Poluentes Químicos da Água/toxicidade
13.
Sci Total Environ ; 912: 168836, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38016568

RESUMO

River ecosystems are heavily impacted by multiple stressors, where effects can cascade downstream of point sources. However, a spatial approach to assess the effects of multiple stressors is missing. We assessed the local and downstream effects on litter decomposition, and associated invertebrate communities of two stressors: flow reduction and artificial light at night (ALAN). We used an 18-flow-through mesocosm system consisting of two tributaries, where we applied the stressors, merging in a downstream section. We assessed the changes in decomposition rate and invertebrate community structure in leaf bags. We found no effect of ALAN or its interaction with flow reduction on the litter decomposition or the invertebrate community in the tributaries. Flow reduction alone led to a 14.8 % reduction in decomposition rate in the tributaries. We recorded no effect of flow reduction on the macroinvertebrates community composition in the litter bags. We also observed no effects of the spatial arrangement of the stressors on the litter decomposition and macroinvertebrate community structure downstream. Overall, our results suggest the impact of stressors on litter decomposition and macroinvertebrate communities remained local in our experiment. Our work thus calls for further studies to identify the mechanisms and the conditions under which spatial effects dominate over local processes.


Assuntos
Ecossistema , Poluição Luminosa , Animais , Invertebrados , Rios/química , Folhas de Planta/química
14.
Environ Sci Pollut Res Int ; 31(33): 45485-45494, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38967849

RESUMO

Chironomid (Diptera: Chironomidae) larvae play a key role in aquatic food webs as prey for predators like amphibian and dragonfly larvae. This trophic link may be disrupted by anthropogenic stressors such as Bacillus thuringiensis var. israelensis (Bti), a biocide widely used in mosquito control. In a companion study, we recorded a 41% reduction of non-target larval chironomids abundance in outdoor floodplain pond mesocosms (FPMs) treated with Bti. Therefore, we examined the diet of two top predators in the FPMs, larvae of the palmate newt (Salamandridae: Lissotriton helveticus) and dragonfly (Aeshnidae: predominantly Anax imperator), using bulk stable isotope analyses of carbon and nitrogen. Additionally, we determined neutral lipid fatty acids in newt larvae to assess diet-related effects on their physiological condition. We did not find any effects of Bti on the diet proportions of newt larvae and no significant effects on the fatty acid content. We observed a trend in Aeshnidae larvae from Bti-FPMs consuming a higher proportion of large prey (Aeshnidae, newt, damselfly larvae; ~42%), and similar parts of smaller prey (chironomid, mayfly, Libellulidae, and zooplankton), compared to controls. Our findings may suggest bottom-up effects of Bti on aquatic predators but should be further evaluated, for instance, by using compound-specific stable isotope analyses of fatty acids or metabarcoding approaches.


Assuntos
Cadeia Alimentar , Larva , Controle de Mosquitos , Lagoas , Animais , Lagoas/química , Controle de Mosquitos/métodos , Comportamento Predatório , Chironomidae , Odonatos , Bacillus thuringiensis , Salamandridae
15.
Environ Toxicol Chem ; 43(6): 1300-1311, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38695738

RESUMO

Leaf decomposition is a key process in stream ecosystems within forested catchments; it is driven by microbial communities, particularly fungi and bacteria. These microorganisms make nutrients and energy bound in leaves available for wider parts of the food web. Leaf-associated microorganisms are subjected to anthropogenic pressures, such as the increased exposure to nutrients and fungicides associated with land-use change. We assessed the sensitivity of leaf-associated microbial communities with differing exposure histories, namely, from pristine (P) streams, and streams impacted by wastewater (W) and agricultural run-off (vineyards; V). In the laboratory, microbial communities were exposed to elevated nutrient (NO3-N: 0.2-18.0 mg/L, PO4-P: 0.02-1.8 mg/L) and fungicide concentrations (sum concentration 0-300 µg/L) in a fully crossed 3 × 4 × 4-factorial design over 21 days. Leaf decomposition and exoenzyme activity were measured as functional endpoints, and fungal community composition and microbial abundance served as structural variables. Overall, leaf decomposition did not differ between fungicide treatments or exposure histories. Nonetheless, substantial changes in the fungal community composition were observed after exposure to environmentally relevant fungicide concentrations. Elevated nutrient concentrations assisted leaf decomposition, and the effect size depended on the exposure history. The observed changes in the fungal community composition support the principle of functional redundancy, with highly efficient decomposers maintaining leaf decomposition. Environ Toxicol Chem 2024;43:1300-1311. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Fungos , Fungicidas Industriais , Folhas de Planta , Poluentes Químicos da Água , Fungicidas Industriais/toxicidade , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Fungos/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Microbiologia da Água , Nutrientes/análise , Bactérias/efeitos dos fármacos , Rios/química , Rios/microbiologia
16.
ACS Infect Dis ; 10(10): 3553-3576, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39327729

RESUMO

The apicoplast is an essential organelle for the viability of apicomplexan parasites Plasmodium falciparum or Toxoplasma gondii, which has been proposed as a suitable drug target for the development of new antiplasmodial drug-candidates. Plasmodione, an antimalarial redox-active lead drug is active at low nM concentrations on several blood stages of Plasmodiumsuch as early rings and gametocytes. Nevertheless, its precise biological targets remain unknown. Here, we described the synthesis and the evaluation of new heteroaromatic analogues of plasmodione, active on asexual blood P. falciparum stages and T. gondii tachyzoites. Using a bioimaging-based analysis, we followed the morphological alterations of T. gondii tachyzoites and revealed a specific loss of the apicoplast upon drug treatment. Lipidomic and fluxomic analyses determined that drug treatment severely impacts apicoplast-hosted FASII activity in T. gondii tachyzoites, further supporting that the apicoplast is a primary target of plasmodione analogues. To follow the drug localization, "clickable" analogues of plasmodione were designed as tools for fluorescence imaging through a Cu(I)-catalyzed azide-alkyne cycloaddition reaction. Short-time incubation of two probes with P. falciparum trophozoites and T. gondii tachyzoites showed that the clicked products localize within, or in the vicinity of, the apicoplast of both Apicomplexa parasites. In P. falciparum, the fluorescence signal was also associated with the mitochondrion, suggesting that bioactivation and activity of plasmodione and related analogues are potentially associated with these two organelles in malaria parasites.


Assuntos
Antimaláricos , Apicoplastos , Plasmodium falciparum , Toxoplasma , Apicoplastos/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Toxoplasma/efeitos dos fármacos , Antimaláricos/farmacologia , Antimaláricos/química , Antimaláricos/síntese química , Humanos , Imagem Óptica
17.
Chemosphere ; 329: 138628, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37030341

RESUMO

The present study investigated the adsorption mechanism of titanium dioxide nanoparticles (nTiO2) on polyethylene microplastics (MPs) and the resulting photocatalytic properties. This effort was supported by ecotoxicological assessments of MPs with adsorbed nTiO2 on the immobility and behaviour of Daphnia magna in presence and absence of UV irradiation. The results showed that nTiO2 were rapidly adsorbed on the surface of MPs (72% of nTiO2 in 9 h). The experimental data fit well with the pseudo-second order kinetic model. Both suspended nTiO2 and nTiO2 immobilized on MPs exhibited comparable photocatalytic properties, with the latter showing a lower effect on Daphnia mobility. A likely explanation is that the suspended nTiO2 acted as a homogeneous catalyst under UV irradiation and generated hydroxyl radicals throughout the test vessel, whereas the nTiO2 adsorbed on MPs acted as a heterogeneous catalyst and generated hydroxyl radicals only locally and thus near the air-water interface. Consequently, Daphnia, which were hiding at the bottom of the test vessel, actively avoided exposure to hydroxyl radicals. These results suggest that the presence of MPs can modulate the phototoxicity of nTiO2 - at least the location at which it is active - under the studied conditions.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Microplásticos , Plásticos , Polietileno/toxicidade , Adsorção , Cinética , Titânio/toxicidade , Nanopartículas/toxicidade , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
18.
Environ Toxicol Chem ; 42(9): 2007-2018, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36718721

RESUMO

The decomposition of allochthonous organic matter, such as leaves, is a crucial ecosystem process in low-order streams. Microbial communities, including fungi and bacteria, colonize allochthonous organic material, break up large molecules, and increase the nutritional value for macroinvertebrates. Environmental variables are known to affect microbial as well as macroinvertebrate communities and alter their ability to decompose organic matter. Studying the relationship between environmental variables and decomposition has mainly been realized using leaves, with the drawbacks of differing substrate composition and consequently between-study variability. To overcome these drawbacks, artificial substrates have been developed, serving as standardizable surrogates. In the present study, we compared microbial and total decomposition of leaves with the standardized substrates of decotabs and, only for microbial decomposition, of cotton strips, across 70 stream sites in a Germany-wide study. Furthermore, we identified the most influential environmental variables for the decomposition of each substrate from a range of 26 variables, including pesticide toxicity, concentrations of nutrients, and trace elements, using stability selection. The microbial as well as total decomposition of the standardized substrates (i.e., cotton strips and decotabs) were weak or not associated with that of the natural substrate (i.e., leaves, r² < 0.01 to r² = 0.04). The decomposition of the two standardized substrates, however, showed a moderate association (r² = 0.21), which is probably driven by their similar composition, with both being made of cellulose. Different environmental variables were identified as the most influential for each of the substrates and the directions of these relationships contrasted between the substrates. Our results imply that these standardized substrates are unsuitable surrogates when investigating the decomposition of allochthonous organic matter in streams. Environ Toxicol Chem 2023;42:2007-2018. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Bactérias , Ecossistema , Fungos , Folhas de Planta , Alemanha
19.
Ecol Evol ; 12(3): e8674, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35309751

RESUMO

Ecosystems are complex structures with interacting abiotic and biotic processes evolving with ongoing succession. However, limited knowledge exists on the very initial phase of ecosystem development and colonization. Here, we report results of a comprehensive ecosystem development monitoring for twelve floodplain pond mesocosms (FPM; 23.5 m × 7.5 m × 1.5 m each) located in south-western Germany. In total, 20 abiotic and biotic parameters, including structural and functional variables, were monitored for 21 months after establishment of the FPMs. The results showed evolving ecosystem development and primary succession in all FPMs, with fluctuating abiotic conditions over time. Principal component analyses and redundancy analyses revealed season and succession time (i.e., time since ecosystem establishment) to be significant drivers of changes in environmental conditions. Initial colonization of both aquatic (i.e., water bodies) and terrestrial (i.e., riparian land areas) parts of the pond ecosystems occurred within the first month, with subsequent season-specific increases in richness and abundance for aquatic and terrestrial taxa over the entire study period. Abiotic environmental conditions and aquatic and terrestrial communities showed increasing interpond variations over time, that is, increasing heterogeneity among the FPMs due to natural environmental divergence. However, both functional variables assessed (i.e., aquatic and terrestrial litter decomposition) showed opposite patterns as litter decomposition rates slightly decreased over time and interpond differences converged with successional ecosystem developments. Overall, our results provide rare insights into the abiotic and biotic conditions and processes during the initial stages of freshwater ecosystem formation, as well as into structural and functional developments of the aquatic and terrestrial environment of newly established pond ecosystems.

20.
Sci Rep ; 9(1): 15676, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31666603

RESUMO

Nanoparticle contaminants enter aquatic ecosystems and are transported along the stream network. Here, we demonstrate a novel pathway for the return of nanoparticles from aquatic to terrestrial ecosystems via cross-boundary subsidies. During their emergence, trichopteran caddisflies carried titanium dioxide and gold nanoparticles into their terrestrial life stages. Moreover, their emergence was delayed by ≤30 days, and their energy reserves were depleted by ≤25%. Based on worst case estimates, it is suggested that terrestrial predators, such as bats feeding on aquatic prey, may ingest up to three orders of magnitude higher gold levels than anticipated for humans. Additionally, terrestrial predator species may suffer from alterations in the temporal availability and nutritional quality of their prey. Considering the substantial transfer of insect biomass to terrestrial ecosystems, nanoparticles may decouple aquatic and terrestrial food webs with important (meta-)ecosystem level consequences.


Assuntos
Quirópteros/fisiologia , Ecossistema , Hidrobiologia , Nanopartículas Metálicas/química , Animais , Biomassa , Cadeia Alimentar , Ouro/química , Humanos , Insetos/fisiologia , Comportamento Predatório/efeitos dos fármacos , Aranhas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA