Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 32(13): 2177-2191, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37010095

RESUMO

Aminoacyl-tRNA synthetases (ARSs) are essential enzymes that ligate tRNA molecules to cognate amino acids. Heterozygosity for missense variants or small in-frame deletions in six ARS genes causes dominant axonal peripheral neuropathy. These pathogenic variants reduce enzyme activity without significantly decreasing protein levels and reside in genes encoding homo-dimeric enzymes. These observations raise the possibility that neuropathy-associated ARS variants exert a dominant-negative effect, reducing overall ARS activity below a threshold required for peripheral nerve function. To test such variants for dominant-negative properties, we developed a humanized yeast assay to co-express pathogenic human alanyl-tRNA synthetase (AARS1) mutations with wild-type human AARS1. We show that multiple loss-of-function AARS1 mutations impair yeast growth through an interaction with wild-type AARS1, but that reducing this interaction rescues yeast growth. This suggests that neuropathy-associated AARS1 variants exert a dominant-negative effect, which supports a common, loss-of-function mechanism for ARS-mediated dominant peripheral neuropathy.


Assuntos
Alanina-tRNA Ligase , Aminoacil-tRNA Sintetases , Doenças do Sistema Nervoso Periférico , Humanos , Alanina-tRNA Ligase/genética , Doenças do Sistema Nervoso Periférico/patologia , Mutação , Aminoacil-tRNA Sintetases/genética , Nervos Periféricos/metabolismo
2.
Ann Neurol ; 96(1): 170-174, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38613459

RESUMO

Quantitative muscle fat fraction (FF) responsiveness is lower in younger Charcot-Marie-Tooth disease type 1A (CMT1A) patients with lower baseline calf-level FF. We investigated the practicality, validity, and responsiveness of foot-level FF in this cohort involving 22 CMT1A patients and 14 controls. The mean baseline foot-level FF was 25.9 ± 20.3% in CMT1A patients, and the 365-day FF (n = 15) increased by 2.0 ± 2.4% (p < 0.001 vs controls). Intrinsic foot-level FF demonstrated large responsiveness (12-month standardized response mean (SRM) of 0.86) and correlated with the CMT examination score (ρ = 0.58, P = 0.01). Intrinsic foot-level FF has the potential to be used as a biomarker in future clinical trials involving younger CMT1A patients. ANN NEUROL 2024;96:170-174.


Assuntos
Doença de Charcot-Marie-Tooth , Progressão da Doença , , Imageamento por Ressonância Magnética , Músculo Esquelético , Humanos , Doença de Charcot-Marie-Tooth/diagnóstico por imagem , Doença de Charcot-Marie-Tooth/fisiopatologia , Criança , Masculino , Feminino , Adolescente , Imageamento por Ressonância Magnética/métodos , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiopatologia , Adulto Jovem
3.
Brain ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38938188

RESUMO

Charcot-Marie-Tooth (CMT) disease is a neuromuscular disorder affecting the peripheral nervous system. The diagnostic yield in demyelinating CMT (CMT1) is typically ∼80-95%, of which at least 60% is due to the PMP22 gene duplication. The remainder of CMT1 is more genetically heterogeneous. We used whole exome and whole genome sequencing data included in the GENESIS database to investigate novel causal genes and mutations in a cohort of ∼2,670 individuals with CMT neuropathy. A recurrent heterozygous missense variant p.Thr1424Met in the recently described CMT gene ITPR3, encoding IP3R3 (inositol 1,4,5-trisphosphate receptor 3) was identified. This previously reported p.Thr1424Met change was present in 33 affected individuals from nine unrelated families from multiple populations, representing an unusual recurrence rate at a mutational hotspot, strengthening the gene-disease relationship (GnomADv4 allele frequency 1.76e-6). Sanger sequencing confirmed the co-segregation of the CMT phenotype with the presence of the mutation in autosomal dominant and de novo inheritance patterns, including a four-generation family with multiple affected second-degree cousins. Probands from all families presented with slow nerve conduction velocities, matching the diagnostic category of CMT1. Remarkably, we observed a uniquely variable clinical phenotype for age at onset and phenotype severity in p.Thr1424Met carrying patients, even within families. Finally, we present data supportive of a dominant-negative effect of the p.Thr1424Met mutation with associated changes in protein expression in patient-derived cells.

4.
Ann Neurol ; 93(3): 563-576, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36203352

RESUMO

OBJECTIVE: The paucity of longitudinal natural history studies in MPZ neuropathy remains a barrier to clinical trials. We have completed a longitudinal natural history study in patients with MPZ neuropathies across 13 sites of the Inherited Neuropathies Consortium. METHODS: Change in Charcot-Marie-Tooth Examination Score (CMTES) and Rasch modified CMTES (CMTES-R) were evaluated using longitudinal regression over a 5-year period in subjects with MPZ neuropathy. Data from 139 patients with MPZ neuropathy were examined. RESULTS: The average baseline CMTES and CMTES-R were 10.84 (standard deviation [SD] = 6.0, range = 0-28) and 14.60 (SD = 7.56, range = 0-32), respectively. A mixed regression model showed significant change in CMTES at years 2-5 (mean change from baseline of 0.87 points at 2 years, p = 0.008). Subgroup analysis revealed greater change in CMTES at 2 years in subjects with axonal as compared to demyelinating neuropathy (mean change of 1.30 points [p = 0.016] vs 0.06 points [p = 0.889]). Patients with a moderate baseline neuropathy severity also showed more notable change, by estimate, than those with mild or severe neuropathy (mean 2-year change of 1.14 for baseline CMTES 8-14 [p = 0.025] vs -0.03 for baseline CMTES 0-7 [p = 0.958] and 0.25 for baseline CMTES ≥ 15 [p = 0.6897]). The progression in patients harboring specific MPZ mutations was highly variable. INTERPRETATION: CMTES is sensitive to change over time in adult patients with axonal but not demyelinating forms of MPZ neuropathy. Change in CMTES was greatest in patients with moderate baseline disease severity. These findings will inform future clinical trials of MPZ neuropathies. ANN NEUROL 2023;93:563-576.


Assuntos
Doença de Charcot-Marie-Tooth , Adulto , Humanos , Doença de Charcot-Marie-Tooth/genética , Estudos Longitudinais , Proteína P0 da Mielina/genética , Mutação , Progressão da Doença
5.
J Peripher Nerv Syst ; 29(2): 202-212, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38581130

RESUMO

BACKGROUND: Caused by duplications of the gene encoding peripheral myelin protein 22 (PMP22), Charcot-Marie-Tooth disease type 1A (CMT1A) is the most common hereditary neuropathy. Despite this shared genetic origin, there is considerable variability in clinical severity. It is hypothesized that genetic modifiers contribute to this heterogeneity, the identification of which may reveal novel therapeutic targets. In this study, we present a comprehensive analysis of clinical examination results from 1564 CMT1A patients sourced from a prospective natural history study conducted by the RDCRN-INC (Inherited Neuropathy Consortium). Our primary objective is to delineate extreme phenotype profiles (mild and severe) within this patient cohort, thereby enhancing our ability to detect genetic modifiers with large effects. METHODS: We have conducted large-scale statistical analyses of the RDCRN-INC database to characterize CMT1A severity across multiple metrics. RESULTS: We defined patients below the 10th (mild) and above the 90th (severe) percentiles of age-normalized disease severity based on the CMT Examination Score V2 and foot dorsiflexion strength (MRC scale). Based on extreme phenotype categories, we defined a statistically justified recruitment strategy, which we propose to use in future modifier studies. INTERPRETATION: Leveraging whole genome sequencing with base pair resolution, a future genetic modifier evaluation will include single nucleotide association, gene burden tests, and structural variant analysis. The present work not only provides insight into the severity and course of CMT1A, but also elucidates the statistical foundation and practical considerations for a cost-efficient and straightforward patient enrollment strategy that we intend to conduct on additional patients recruited globally.


Assuntos
Doença de Charcot-Marie-Tooth , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/fisiopatologia , Humanos , Adulto , Masculino , Feminino , Pessoa de Meia-Idade , Adolescente , Adulto Jovem , Índice de Gravidade de Doença , Criança , Proteínas da Mielina/genética , Seleção de Pacientes , Fenótipo , Idoso , Genes Modificadores , Pré-Escolar
6.
Brain ; 146(10): 4191-4199, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37170631

RESUMO

COQ7 encodes a hydroxylase responsible for the penultimate step of coenzyme Q10 (CoQ10) biosynthesis in mitochondria. CoQ10 is essential for multiple cellular functions, including mitochondrial oxidative phosphorylation, lipid metabolism, and reactive oxygen species homeostasis. Mutations in COQ7 have been previously associated with primary CoQ10 deficiency, a clinically heterogeneous multisystemic mitochondrial disorder. We identified COQ7 biallelic variants in nine families diagnosed with distal hereditary motor neuropathy with upper neuron involvement, expending the clinical phenotype associated with defects in this gene. A recurrent p.Met1? change was identified in five families from Brazil with evidence of a founder effect. Fibroblasts isolated from patients revealed a substantial depletion of COQ7 protein levels, indicating protein instability leading to loss of enzyme function. High-performance liquid chromatography assay showed that fibroblasts from patients had reduced levels of CoQ10, and abnormal accumulation of the biosynthetic precursor DMQ10. Accordingly, fibroblasts from patients displayed significantly decreased oxygen consumption rates in patients, suggesting mitochondrial respiration deficiency. Induced pluripotent stem cell-derived motor neurons from patient fibroblasts showed significantly increased levels of extracellular neurofilament light protein, indicating axonal degeneration. Our findings indicate a molecular pathway involving CoQ10 biosynthesis deficiency and mitochondrial dysfunction in patients with distal hereditary motor neuropathy. Further studies will be important to evaluate the potential benefits of CoQ10 supplementation in the clinical outcome of the disease.


Assuntos
Doenças Mitocondriais , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Neurônios Motores/metabolismo , Mutação/genética , Ubiquinona/genética
7.
Brain ; 146(10): 4336-4349, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37284795

RESUMO

Charcot-Marie-Tooth disease (CMT) due to GJB1 variants (CMTX1) is the second most common form of CMT. It is an X-linked disorder characterized by progressive sensory and motor neuropathy with males affected more severely than females. Many reported GJB1 variants remain classified as variants of uncertain significance (VUS). In this large, international, multicentre study we prospectively collected demographic, clinical and genetic data on patients with CMT associated with GJB1 variants. Pathogenicity for each variant was defined using adapted American College of Medical Genetics criteria. Baseline and longitudinal analyses were conducted to study genotype-phenotype correlations, to calculate longitudinal change using the CMT Examination Score (CMTES), to compare males versus females, and pathogenic/likely pathogenic (P/LP) variants versus VUS. We present 387 patients from 295 families harbouring 154 variants in GJB1. Of these, 319 patients (82.4%) were deemed to have P/LP variants, 65 had VUS (16.8%) and three benign variants (0.8%; excluded from analysis); an increased proportion of patients with P/LP variants compared with using ClinVar's classification (74.6%). Male patients (166/319, 52.0%, P/LP only) were more severely affected at baseline. Baseline measures in patients with P/LP variants and VUS showed no significant differences, and regression analysis suggested the disease groups were near identical at baseline. Genotype-phenotype analysis suggested c.-17G>A produces the most severe phenotype of the five most common variants, and missense variants in the intracellular domain are less severe than other domains. Progression of disease was seen with increasing CMTES over time up to 8 years follow-up. Standard response mean (SRM), a measure of outcome responsiveness, peaked at 3 years with moderate responsiveness [change in CMTES (ΔCMTES) = 1.3 ± 2.6, P = 0.00016, SRM = 0.50]. Males and females progressed similarly up to 8 years, but baseline regression analysis suggested that over a longer period, females progress more slowly. Progression was most pronounced for mild phenotypes (CMTES = 0-7; 3-year ΔCMTES = 2.3 ± 2.5, P = 0.001, SRM = 0.90). Enhanced variant interpretation has yielded an increased proportion of GJB1 variants classified as P/LP and will aid future variant interpretation in this gene. Baseline and longitudinal analysis of this large cohort of CMTX1 patients describes the natural history of the disease including the rate of progression; CMTES showed moderate responsiveness for the whole group at 3 years and higher responsiveness for the mild group at 3, 4 and 5 years. These results have implications for patient selection for upcoming clinical trials.


Assuntos
Doença de Charcot-Marie-Tooth , Feminino , Humanos , Masculino , Doença de Charcot-Marie-Tooth/patologia , Conexinas/genética , Mutação/genética , Mutação de Sentido Incorreto , Fenótipo , Proteína beta-1 de Junções Comunicantes
8.
Brain ; 146(12): 4880-4890, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37769650

RESUMO

Congenital insensitivity to pain (CIP) and hereditary sensory and autonomic neuropathies (HSAN) are clinically and genetically heterogeneous disorders exclusively or predominantly affecting the sensory and autonomic neurons. Due to the rarity of the diseases and findings based mainly on single case reports or small case series, knowledge about these disorders is limited. Here, we describe the molecular workup of a large international cohort of CIP/HSAN patients including patients from normally under-represented countries. We identify 80 previously unreported pathogenic or likely pathogenic variants in a total of 73 families in the >20 known CIP/HSAN-associated genes. The data expand the spectrum of disease-relevant alterations in CIP/HSAN, including novel variants in previously rarely recognized entities such as ATL3-, FLVCR1- and NGF-associated neuropathies and previously under-recognized mutation types such as larger deletions. In silico predictions, heterologous expression studies, segregation analyses and metabolic tests helped to overcome limitations of current variant classification schemes that often fail to categorize a variant as disease-related or benign. The study sheds light on the genetic causes and disease-relevant changes within individual genes in CIP/HSAN. This is becoming increasingly important with emerging clinical trials investigating subtype or gene-specific treatment strategies.


Assuntos
Neuropatias Hereditárias Sensoriais e Autônomas , Insensibilidade Congênita à Dor , Humanos , Insensibilidade Congênita à Dor/genética , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Mutação/genética
9.
J Peripher Nerv Syst ; 28(2): 237-251, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36748295

RESUMO

Charcot-Marie-Tooth disease (CMT) reduces health-related quality of life (QOL) in children. We have previously developed and validated the English and Italian versions of the pediatric CMT-specific QOL outcome measure (pCMT-QOL) for children aged 8 to 18. There is currently no parent-proxy CMT QOL outcome measure for use in clinical trials, which could provide complementary information in these children and adolescents. This study describes the validation studies conducted to develop the parent-proxy version of the pCMT-QOL outcome measure for children aged 8 to 18 years old. Development and validation of the parent-proxy version of the pCMT-QOL outcome measure for children aged 8 to 18 years old was iterative, involving identifying relevant domains, item pool generation, prospective pilot testing and clinical assessments, structured focus-group interviews, and psychometric testing, conducted on parents of children with CMT seen at participating sites from the USA, United Kingdom, and Australia. We utilized previously described methods to develop a working parent-proxy version of the pCMT-QOL measure. From 2010 to 2016, the parent-proxy pCMT-QOL working version was administered to 358 parents of children with CMT aged 8 to 18, seen at the participating study sites of the Inherited Neuropathies Consortium. The resulting data underwent rigorous psychometric analysis, including factor analysis, test-retest reliability, internal consistency, convergent validity, IRT analysis, and longitudinal analysis, to develop the final parent-proxy version of the pCMT-QOL outcome measure for children aged 8 to 18 years old. The parent-proxy version of the pCMT-QOL outcome measure is a reliable, valid, and sensitive proxy measure of health-related QOL for children aged 8 to 18 with CMT.


Assuntos
Doença de Charcot-Marie-Tooth , Qualidade de Vida , Adolescente , Humanos , Criança , Reprodutibilidade dos Testes , Estudos Prospectivos , Pais , Psicometria , Inquéritos e Questionários
10.
J Peripher Nerv Syst ; 28(3): 382-389, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37166413

RESUMO

OBJECTIVE: To evaluate the parent-proxy version of the pediatric Charcot Marie Tooth specific quality of life (pCMT-QOL) outcome instrument for children aged 7 or younger with CMT. We have previously developed and validated the direct-report pCMT-QOL for children aged 8-18 years and a parent proxy version of the instrument for children 8-18 years old. There is currently no CMT-QOL outcome measure for children aged 0-7 years old. METHODS: Testing was conducted in parents or caregivers of children aged 0-7 years old with CMT evaluated at participating INC sites from the USA, United Kingdom, and Australia. The development of the instrument was iterative, involving identification of relevant domains, item pool generation, prospective pilot testing and clinical assessments, structured focus group interviews, and psychometric testing. The parent-proxy instrument was validated rigorously by examining previously identified domains and undergoing psychometric tests for children aged 0-7. RESULTS: The parent-proxy pCMT-QOL working versions were administered to 128 parents/caregivers of children aged 0-7 years old between 2010 and 2016. The resulting data underwent rigorous psychometric analysis, including factor analysis, internal consistency, and convergent validity, and longitudinal analysis to develop the final parent-proxy version of the pCMT-QOL outcome measure for children aged 0-7 years old. CONCLUSIONS: The parent-proxy version of the pCMT-QOL outcome measure, known as the pCMT-QOL (0-7 years parent-proxy) is a valid and sensitive proxy measure of health-related QOL for children aged 0-7 years with CMT.


Assuntos
Doença de Charcot-Marie-Tooth , Qualidade de Vida , Humanos , Criança , Adolescente , Recém-Nascido , Lactente , Pré-Escolar , Estudos Prospectivos , Pais , Procurador , Psicometria/métodos , Reprodutibilidade dos Testes , Inquéritos e Questionários
11.
Ann Neurol ; 89(2): 369-379, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33222249

RESUMO

OBJECTIVE: Charcot-Marie-Tooth disease (CMT) reduces health-related quality of life (QOL), especially in children. Defining QOL in pediatric CMT can help physicians monitor disease burden clinically and in trials. We identified items pertaining to QOL in children with CMT and conducted validation studies to develop a pediatric CMT-specific QOL outcome measure (pCMT-QOL). METHODS: Development and validation of the pCMT-QOL patient-reported outcome measure were iterative, involving identifying relevant domains, item pool generation, prospective pilot testing and clinical assessments, structured focus-group interviews, and psychometric testing. Testing was conducted in children with CMT seen at participating sites from the USA, United Kingdom, and Australia. RESULTS: We conducted systematic literature reviews and analysis of generic QOL measures to identify 6 domains relevant to QOL in children with CMT. Sixty items corresponding to those domains were developed de novo, or identified from literature review and CMT-specific modification of items from the pediatric Neuro-QOL measures. The draft version underwent prospective feasibility and face content validity assessments to develop a working version of the pCMT-QOL measure. From 2010 to 2016, the pCMT-QOL working version was administered to 398 children aged 8 to 18 years seen at the participating study sites of the Inherited Neuropathies Consortium. The resulting data underwent rigorous psychometric analysis, including factor analysis, test-retest reliability, internal consistency, convergent validity, item response theory analysis, and longitudinal analysis, to develop the final pCMT-QOL patient-reported outcome measure. INTERPRETATION: The pCMT-QOL patient-reported outcome measure is a reliable, valid, and sensitive measure of health-related QOL for children with CMT. ANN NEUROL 2021;89:369-379.


Assuntos
Atividades Cotidianas , Doença de Charcot-Marie-Tooth/fisiopatologia , Cognição , Emoções , Medidas de Resultados Relatados pelo Paciente , Qualidade de Vida , Participação Social , Adolescente , Doença de Charcot-Marie-Tooth/psicologia , Criança , Pré-Escolar , Análise Fatorial , Feminino , Humanos , Estudos Longitudinais , Masculino , Avaliação de Resultados em Cuidados de Saúde , Psicometria , Reprodutibilidade dos Testes , Habilidades Sociais
12.
Brain ; 144(4): 1197-1213, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33889941

RESUMO

The CADM family of proteins consists of four neuronal specific adhesion molecules (CADM1, CADM2, CADM3 and CADM4) that mediate the direct contact and interaction between axons and glia. In the peripheral nerve, axon-Schwann cell interaction is essential for the structural organization of myelinated fibres and is primarily mediated by the binding of CADM3, expressed in axons, to CADM4, expressed by myelinating Schwann cells. We have identified-by whole exome sequencing-three unrelated families, including one de novo patient, with axonal Charcot-Marie-Tooth disease (CMT2) sharing the same private variant in CADM3, Tyr172Cys. This variant is absent in 230 000 control chromosomes from gnomAD and predicted to be pathogenic. Most CADM3 patients share a similar phenotype consisting of autosomal dominant CMT2 with marked upper limb involvement. High resolution mass spectrometry analysis detected a newly created disulphide bond in the mutant CADM3 potentially modifying the native protein conformation. Our data support a retention of the mutant protein in the endoplasmic reticulum and reduced cell surface expression in vitro. Stochastic optical reconstruction microscopy imaging revealed decreased co-localization of the mutant with CADM4 at intercellular contact sites. Mice carrying the corresponding human mutation (Cadm3Y170C) showed reduced expression of the mutant protein in axons. Cadm3Y170C mice showed normal nerve conduction and myelin morphology, but exhibited abnormal axonal organization, including abnormal distribution of Kv1.2 channels and Caspr along myelinated axons. Our findings indicate the involvement of abnormal axon-glia interaction as a disease-causing mechanism in CMT patients with CADM3 mutations.


Assuntos
Moléculas de Adesão Celular/genética , Doença de Charcot-Marie-Tooth/genética , Imunoglobulinas/genética , Adulto , Axônios/patologia , Doença de Charcot-Marie-Tooth/metabolismo , Doença de Charcot-Marie-Tooth/patologia , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Neuroglia/patologia , Linhagem , Fenótipo
13.
Am J Hum Genet ; 102(3): 505-514, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29499166

RESUMO

Although mutations in more than 90 genes are known to cause CMT, the underlying genetic cause of CMT remains unknown in more than 50% of affected individuals. The discovery of additional genes that harbor CMT2-causing mutations increasingly depends on sharing sequence data on a global level. In this way-by combining data from seven countries on four continents-we were able to define mutations in ATP1A1, which encodes the alpha1 subunit of the Na+,K+-ATPase, as a cause of autosomal-dominant CMT2. Seven missense changes were identified that segregated within individual pedigrees: c.143T>G (p.Leu48Arg), c.1775T>C (p.Ile592Thr), c.1789G>A (p.Ala597Thr), c.1801_1802delinsTT (p.Asp601Phe), c.1798C>G (p.Pro600Ala), c.1798C>A (p.Pro600Thr), and c.2432A>C (p.Asp811Ala). Immunostaining peripheral nerve axons localized ATP1A1 to the axolemma of myelinated sensory and motor axons and to Schmidt-Lanterman incisures of myelin sheaths. Two-electrode voltage clamp measurements on Xenopus oocytes demonstrated significant reduction in Na+ current activity in some, but not all, ouabain-insensitive ATP1A1 mutants, suggesting a loss-of-function defect of the Na+,K+ pump. Five mutants fall into a remarkably narrow motif within the helical linker region that couples the nucleotide-binding and phosphorylation domains. These findings identify a CMT pathway and a potential target for therapy development in degenerative diseases of peripheral nerve axons.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Genes Dominantes , Mutação/genética , ATPase Trocadora de Sódio-Potássio/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Criança , Família , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , ATPase Trocadora de Sódio-Potássio/química , Adulto Jovem
14.
J Peripher Nerv Syst ; 26(2): 177-183, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33960567

RESUMO

Mutations in Myelin Protein Zero (MPZ) cause CMT1B, the second leading cause of CMT1. Many of the >200 mutations cause neuropathy through a toxic gain of function by the mutant protein such as ER retention, activation of the Unfolded Protein Response (UPR) or disruption of myelin compaction. While there is extensive literature on the loss of function consequences of MPZ in heterozygous Mpz +/- null mice, there is little known of the consequences of MPZ haploinsufficiency in humans. We identified six patients from different families with p.Tyr68Ter or p.Asp104fs heterozygous mutations of MPZ that are predicted to cause a premature termination and nonsense mediated decay of the mutant allele. Five patients were evaluated in Milan and one in Iowa City; all should be haploinsufficient for MPZ. Patients were evaluated clinically and by electrophysiology. Sensory ataxia dominated the clinical presentation with only mild weakness present in five of the six patients. Symptoms presented in adulthood in all patients and only one individual had a CMTNSv2 >5. Deep tendon reflexes were absent in all patients. Patients with likely MPZ loss of function due to mutations that cause haplodeficiency in MPZ have a mild, predominantly large fiber sensory neuropathy that serves as a human equivalent to the neuropathy observed in heterozygous Mpz null mice. Successful therapeutic approaches in treating Mpz deficient mice may be candidates for trials in these and similar patients.


Assuntos
Doença de Charcot-Marie-Tooth , Proteína P0 da Mielina/genética , Animais , Doença de Charcot-Marie-Tooth/genética , Fenômenos Eletrofisiológicos , Humanos , Camundongos , Mutação/genética , Bainha de Mielina
15.
Brain ; 143(12): 3589-3602, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33415332

RESUMO

Mitofusin-2 (MFN2) is one of two ubiquitously expressed homologous proteins in eukaryote cells, playing a critical role in mitochondrial fusion. Mutations in MFN2 (most commonly autosomal dominant) cause Charcot-Marie-Tooth disease type 2A (CMT2A), the commonest axonal form of CMT, with significant allelic heterogeneity. Previous, moderately-sized, cross sectional genotype-phenotype studies of CMT2A have described the phenotypic spectrum of the disease, but longitudinal natural history studies are lacking. In this large multicentre prospective cohort study of 196 patients with dominant and autosomal recessive CMT2A, we present an in-depth genotype-phenotype study of the baseline characteristics of patients with CMT2A and longitudinal data (1-2 years) to describe the natural history. A childhood onset of autosomal dominant CMT2A is the most predictive marker of significant disease severity and is independent of the disease duration. When compared to adult onset autosomal dominant CMT2A, it is associated with significantly higher rates of use of ankle-foot orthoses, full-time use of wheelchair, dexterity difficulties and also has significantly higher CMT Examination Score (CMTESv2) and CMT Neuropathy Score (CMTNSv2) at initial assessment. Analysis of longitudinal data using the CMTESv2 and its Rasch-weighted counterpart, CMTESv2-R, show that over 1 year, the CMTESv2 increases significantly in autosomal dominant CMT2A (mean change 0.84 ± 2.42; two-tailed paired t-test P = 0.039). Furthermore, over 2 years both the CMTESv2 (mean change 0.97 ± 1.77; two-tailed paired t-test P = 0.003) and the CMTESv2-R (mean change 1.21 ± 2.52; two-tailed paired t-test P = 0.009) increase significantly with respective standardized response means of 0.55 and 0.48. In the paediatric CMT2A population (autosomal dominant and autosomal recessive CMT2A grouped together), the CMT Pediatric Scale increases significantly both over 1 year (mean change 2.24 ± 3.09; two-tailed paired t-test P = 0.009) and over 2 years (mean change 4.00 ± 3.79; two-tailed paired t-test P = 0.031) with respective standardized response means of 0.72 and 1.06. This cross-sectional and longitudinal study of the largest CMT2A cohort reported to date provides guidance for variant interpretation, informs prognosis and also provides natural history data that will guide clinical trial design.


Assuntos
Doença de Charcot-Marie-Tooth/patologia , Adolescente , Adulto , Idade de Início , Doença de Charcot-Marie-Tooth/genética , Criança , Pré-Escolar , Estudos de Coortes , Progressão da Doença , Feminino , GTP Fosfo-Hidrolases/genética , Genes Dominantes , Genes Recessivos , Estudos de Associação Genética , Marcadores Genéticos , Humanos , Lactente , Estudos Longitudinais , Masculino , Proteínas Mitocondriais/genética , Exame Neurológico , Aparelhos Ortopédicos/estatística & dados numéricos , Prognóstico , Estudos Prospectivos , Cadeiras de Rodas , Adulto Jovem
16.
Ann Neurol ; 85(3): 316-330, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30706531

RESUMO

OBJECTIVE: Genetic modifiers in rare disease have long been suspected to contribute to the considerable variance in disease expression, including Charcot-Marie-Tooth disease type 1A (CMT1A). To address this question, the Inherited Neuropathy Consortium collected a large standardized sample of such rare CMT1A patients over a period of 8 years. CMT1A is caused in most patients by a uniformly sized 1.5 Mb duplication event involving the gene PMP22. METHODS: We genotyped DNA samples from 971 CMT1A patients on Illumina BeadChips. Genome-wide analysis was performed in a subset of 330 of these patients, who expressed the extremes of a hallmark symptom: mild and severe foot dorsiflexion strength impairment. SIPA1L2 (signal-induced proliferation-associated 1 like 2), the top identified candidate modifier gene, was expressed in the peripheral nerve, and our functional studies identified and confirmed interacting proteins using coimmunoprecipitation analysis, mass spectrometry, and immunocytochemistry. Chromatin immunoprecipitation and in vitro siRNA experiments were used to analyze gene regulation. RESULTS: We identified significant association of 4 single nucleotide polymorphisms (rs10910527, rs7536385, rs4649265, rs1547740) in SIPA1L2 with foot dorsiflexion strength (p < 1 × 10-7 ). Coimmunoprecipitation and mass spectroscopy studies identified ß-actin and MYH9 as SIPA1L2 binding partners. Furthermore, we show that SIPA1L2 is part of a myelination-associated coexpressed network regulated by the master transcription factor SOX10. Importantly, in vitro knockdown of SIPA1L2 in Schwannoma cells led to a significant reduction of PMP22 expression, hinting at a potential strategy for drug development. INTERPRETATION: SIPA1L2 is a potential genetic modifier of CMT1A phenotypic expressions and offers a new pathway to therapeutic interventions. ANN NEUROL 2019;85:316-330.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Pé/fisiopatologia , Proteínas Ativadoras de GTPase/genética , Genes Modificadores/genética , Debilidade Muscular/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular Tumoral , Doença de Charcot-Marie-Tooth/fisiopatologia , Criança , Pré-Escolar , Feminino , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Redes Reguladoras de Genes , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , Debilidade Muscular/fisiopatologia , Proteínas da Mielina/genética , Neurilemoma/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Ratos , Índice de Gravidade de Doença , Adulto Jovem
17.
Ann Neurol ; 83(4): 756-770, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29518270

RESUMO

OBJECTIVE: Charcot-Marie-Tooth type 4J (CMT4J) is a rare autosomal recessive neuropathy caused by mutations in FIG4 that result in loss of FIG4 protein. This study investigates the natural history and mechanisms of segmental demyelination in CMT4J. METHODS: Over the past 9 years, we have enrolled and studied a cohort of 12 CMT4J patients, including 6 novel FIG4 mutations. We evaluated these patients and related mouse models using morphological, electrophysiological, and biochemical approaches. RESULTS: We found sensory motor demyelinating polyneuropathy consistently in all patients. This underlying myelin pathology was associated with nonuniform slowing of conduction velocities, conduction block, and temporal dispersion on nerve conduction studies, which resemble those features in acquired demyelinating peripheral nerve diseases. Segmental demyelination was also confirmed in mice without Fig4 (Fig4-/- ). The demyelination was associated with an increase of Schwann cell dedifferentiation and macrophages in spinal roots where nerve-blood barriers are weak. Schwann cell dedifferentiation was induced by the increasing intracellular Ca2+ . Suppression of Ca2+ level by a chelator reduced dedifferentiation and demyelination of Schwann cells in vitro and in vivo. Interestingly, cell-specific knockout of Fig4 in mouse Schwann cells or neurons failed to cause segmental demyelination. INTERPRETATION: Myelin change in CMT4J recapitulates the features of acquired demyelinating neuropathies. This pathology is not Schwann cell autonomous. Instead, it relates to systemic processes involving interactions of multiple cell types and abnormally elevated intracellular Ca2+ . Injection of a Ca2+ chelator into Fig4-/- mice improved segmental demyelination, thereby providing a therapeutic strategy against demyelination. Ann Neurol 2018;83:756-770.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Doenças Desmielinizantes/genética , Flavoproteínas/genética , Mutação , Bainha de Mielina/patologia , Monoéster Fosfórico Hidrolases/genética , Potenciais de Ação/genética , Adolescente , Adulto , Animais , Cálcio/metabolismo , Células Cultivadas , Doença de Charcot-Marie-Tooth/fisiopatologia , Criança , Estudos de Coortes , Doenças Desmielinizantes/tratamento farmacológico , Modelos Animais de Doenças , Feminino , Fibroblastos , Flavoproteínas/metabolismo , Humanos , Macrófagos/patologia , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Fibras Nervosas/patologia , Fibras Nervosas/ultraestrutura , Proteínas do Tecido Nervoso/metabolismo , Condução Nervosa/genética , Monoéster Fosfórico Hidrolases/metabolismo , Nervo Isquiático/metabolismo , Nervo Isquiático/patologia
18.
Hum Mutat ; 39(3): 415-432, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29235198

RESUMO

Histidyl-tRNA synthetase (HARS) ligates histidine to cognate tRNA molecules, which is required for protein translation. Mutations in HARS cause the dominant axonal peripheral neuropathy Charcot-Marie-Tooth disease type 2W (CMT2W); however, the precise molecular mechanism remains undefined. Here, we investigated three HARS missense mutations associated with CMT2W (p.Tyr330Cys, p.Ser356Asn, and p.Val155Gly). The three mutations localize to the HARS catalytic domain and failed to complement deletion of the yeast ortholog (HTS1). Enzyme kinetics, differential scanning fluorimetry (DSF), and analytical ultracentrifugation (AUC) were employed to assess the effect of these substitutions on primary aminoacylation function and overall dimeric structure. Notably, the p.Tyr330Cys, p.Ser356Asn, and p.Val155Gly HARS substitutions all led to reduced aminoacylation, providing a direct connection between CMT2W-linked HARS mutations and loss of canonical ARS function. While DSF assays revealed that only one of the variants (p.Val155Gly) was less thermally stable relative to wild-type, all three HARS mutants formed stable dimers, as measured by AUC. Our work represents the first biochemical analysis of CMT-associated HARS mutations and underscores how loss of the primary aminoacylation function can contribute to disease pathology.


Assuntos
Axônios/patologia , Histidina-tRNA Ligase/metabolismo , Doenças do Sistema Nervoso Periférico/enzimologia , Doenças do Sistema Nervoso Periférico/patologia , Sequência de Aminoácidos , Aminoacilação , Biocatálise , Domínio Catalítico , Sequência Conservada , Feminino , Teste de Complementação Genética , Histidina-tRNA Ligase/química , Histidina-tRNA Ligase/genética , Histidina-tRNA Ligase/isolamento & purificação , Humanos , Cinética , Masculino , Mutação/genética , Linhagem , Doenças do Sistema Nervoso Periférico/genética , Multimerização Proteica , Especificidade por Substrato
19.
Brain ; 140(6): 1561-1578, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28459997

RESUMO

Despite extensive efforts, half of patients with rare movement disorders such as hereditary spastic paraplegias and cerebellar ataxias remain genetically unexplained, implicating novel genes and unrecognized mutations in known genes. Non-coding DNA variants are suspected to account for a substantial part of undiscovered causes of rare diseases. Here we identified mutations located deep in introns of POLR3A to be a frequent cause of hereditary spastic paraplegia and cerebellar ataxia. First, whole-exome sequencing findings in a recessive spastic ataxia family turned our attention to intronic variants in POLR3A, a gene previously associated with hypomyelinating leukodystrophy type 7. Next, we screened a cohort of hereditary spastic paraplegia and cerebellar ataxia cases (n = 618) for mutations in POLR3A and identified compound heterozygous POLR3A mutations in ∼3.1% of index cases. Interestingly, >80% of POLR3A mutation carriers presented the same deep-intronic mutation (c.1909+22G>A), which activates a cryptic splice site in a tissue and stage of development-specific manner and leads to a novel distinct and uniform phenotype. The phenotype is characterized by adolescent-onset progressive spastic ataxia with frequent occurrence of tremor, involvement of the central sensory tracts and dental problems (hypodontia, early onset of severe and aggressive periodontal disease). Instead of the typical hypomyelination magnetic resonance imaging pattern associated with classical POLR3A mutations, cases carrying c.1909+22G>A demonstrated hyperintensities along the superior cerebellar peduncles. These hyperintensities may represent the structural correlate to the cerebellar symptoms observed in these patients. The associated c.1909+22G>A variant was significantly enriched in 1139 cases with spastic ataxia-related phenotypes as compared to unrelated neurological and non-neurological phenotypes and healthy controls (P = 1.3 × 10-4). In this study we demonstrate that (i) autosomal-recessive mutations in POLR3A are a frequent cause of hereditary spastic ataxias, accounting for about 3% of hitherto genetically unclassified autosomal recessive and sporadic cases; and (ii) hypomyelination is frequently absent in POLR3A-related syndromes, especially when intronic mutations are present, and thus can no longer be considered as the unifying feature of POLR3A disease. Furthermore, our results demonstrate that substantial progress in revealing the causes of Mendelian diseases can be made by exploring the non-coding sequences of the human genome.


Assuntos
Deficiência Intelectual/genética , Espasticidade Muscular/genética , Atrofia Óptica/genética , RNA Polimerase III/genética , Paraplegia Espástica Hereditária/genética , Ataxias Espinocerebelares/genética , Idoso , Técnicas de Cultura de Células , Éxons/genética , Feminino , Estudos de Associação Genética , Humanos , Células-Tronco Pluripotentes Induzidas , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/fisiopatologia , Íntrons/genética , Masculino , Pessoa de Meia-Idade , Espasticidade Muscular/diagnóstico por imagem , Espasticidade Muscular/fisiopatologia , Mutação , Atrofia Óptica/diagnóstico por imagem , Atrofia Óptica/fisiopatologia , Linhagem , Fenótipo , Paraplegia Espástica Hereditária/diagnóstico por imagem , Paraplegia Espástica Hereditária/fisiopatologia , Ataxias Espinocerebelares/diagnóstico por imagem , Ataxias Espinocerebelares/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA