Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(24)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36559778

RESUMO

This paper explored the injection foaming process of in situ fibrillation reinforced polypropylene composites. Using polypropylene (PP) as the continuous phase, polytetrafluoroethylene (PTFE) as the dispersed phase, multi-wall carbon nanotubes (MWCNTs) as the conductive filler, and PP grafted with maleic anhydride (PP-g-MA) as the compatibilizer, a MWCNTs/PP-g-MA masterbatch was prepared by using a solution blending method. Then, a lightweight, conductive PP/PTFE/MWCNTs composite foam was prepared by means of extruder granulation and supercritical nitrogen (ScN2) injection foaming. The composite foams were studied in terms of rheology, morphological, foaming behavior and mechanical properties. The results proved that the in situ fibrillation of PTFE can have a remarkable effect on melt strength and viscoelasticity, thus improving the foaming performance; we found that PP/3% PTFE showed excellent performance. Meanwhile, the addition of MWCNTs endows the material with conductive properties, and the conductivity reached was 2.73 × 10-5 S/m with the addition of 0.2 wt% MWCNTs. This study's findings are expected to be applied in the lightweight, antistatic and high-performance automotive industry.

2.
Polymers (Basel) ; 11(1)2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30960090

RESUMO

Polymer foams are promising for sound absorption applications. In order to process an industrial product, a series of polystyrene (PS) composite foams were prepared by continuous extrusion foaming assisted by supercritical CO2. Because the cell size and cell density were the key to determine the sound absorption coefficient at normal incidence, the bio-resource lignin was employed for the first time to control the cellular structure on basis of hetero-nucleation effect. The sound absorption range of the PS/lignin composite foams was corresponding to the cellular structure and lignin content. As a result, the maximum sound absorption coefficient at normal incidence was higher than 0.90. For a comparison, multiwall carbon nanotube (MWCNT) and micro graphite (mGr) particles were also used as the nucleation agent during the foaming process, respectively, which were more effective on the hetero-nucleation effect. The mechanical property and thermal stability of various foams were measured as well. Lignin showed a fire retardant effect in PS composite foam.

3.
Polymers (Basel) ; 10(3)2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30966311

RESUMO

The application area of a sound insulation material is highly dependent on the technology adopted for its processing. In this study, thermoplastic rubber (TPR, polypropylene/ethylene propylene diene monomer) composites were simply prepared via an extrusion method. Two microscale particles, CaCO3 and hollow glass microspheres (HGW) were chosen to not only enhance the sound insulation but also reinforced the mechanical properties. Meanwhile, the processing capability of composites was confirmed. SEM images showed that the CaCO3 was uniformly dispersed in TPR matrix with ~3 µm scale aggregates, while the HGM was slightly aggregated to ~13 µm scale. The heterogeneous dispersion of micro-scale fillers strongly affected the sound transmission loss (STL) value of composites. The STL values of TPR composites with 40 wt % CaCO3 and 20 wt % HGM composites were about 12 dB and 7 dB higher than that of pure TPR sample, respectively. The improved sound insulation performances of the composites have been attributed to the enhanced reflection and dissipate sound energy in the heterogeneous composite. Moreover, the mechanical properties were also enhanced. The discontinued sound impedance and reinforced stiffness were considered as crucial for the sound insulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA