Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(14)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34300700

RESUMO

The removal of organic pollutants using green environmental photocatalytic degradation techniques urgently need high-performance catalysts. In this work, a facile one-step hydrothermal technique has been successfully applied to synthesize a Nb2O5 photocatalyst with uniform micro-flower structure for the degradation of methyl orange (MO) under UV irradiation. These nanocatalysts are characterized by transmission and scanning electron microscopies (TEM and SEM), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) method, and UV-Vis diffuse reflectance spectroscopy (DRS). It is found that the prepared Nb2O5 micro-flowers presents a good crystal phases and consist of 3D hierarchical nanosheets with 400-500 nm in diameter. The surface area is as large as 48.6 m2 g-1. Importantly, the Nb2O5 micro-flowers exhibit superior catalytic activity up to 99.9% for the photodegradation of MO within 20 mins, which is about 60-fold and 4-fold larger than that of without catalysts (W/O) and commercial TiO2 (P25) sample, respectively. This excellent performance may be attributed to 3D porous structure with abundant catalytic active sites.

2.
RSC Adv ; 9(48): 28078-28088, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-35530489

RESUMO

Anchoring ruthenium(ii) trisbipyridine complex [Ru(Bpy)3]2+ into a magnetic dendritic fibrous silica nanostructure produces an unprecedented strong nanocatalyst, FeNi3/DFNS/[Ru(Bpy)3]2+. Impressive oxidation of phenols to 1,4-benzoquinones catalyzed by FeNi3/DFNS/[Ru(Bpy)3]2+ is obtained in acetonitrile and water solution with molecular dioxygen as oxidant. Exclusively, apparently inert phenols such as phenol itself and mono-alkyl-substituted phenols are impressively oxidized to produce 1,4-benzoquinones through activation of the C-H bond in the position para to the carbon-oxygen bond under mild conditions. In addition, the production of industrially significant quinones that are known intermediates for vitamin combinations is investigated and studied FeNi3/DFNS/[Ru(Bpy)3]2+ magnetic nanoparticles were produced, and their properties were investigated by AFM, FTIR, XRD, TGA, SEM, TEM, and VSM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA