Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Stroke ; 55(6): 1641-1649, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38572660

RESUMO

BACKGROUND: The current management of patients with stroke with intravenous thrombolysis and endovascular thrombectomy is effective only when it is timely performed on an appropriately selected but minor fraction of patients. The development of novel adjunctive therapy is highly desired to reduce morbidity and mortality with stroke. Since endothelial dysfunction is implicated in the pathogenesis of stroke and is featured with suppressed endothelial nitric oxide synthase (eNOS) with concomitant nitric oxide deficiency, restoring endothelial nitric oxide represents a promising approach to treating stroke injury. METHODS: This is a preclinical proof-of-concept study to determine the therapeutic effect of transcranial treatment with a low-power near-infrared laser in a mouse model of ischemic stroke. The laser treatment was performed before the middle cerebral artery occlusion with a filament. To determine the involvement of eNOS phosphorylation, unphosphorylatable eNOS S1176A knock-in mice were used. Each measurement was analyzed by a 2-way ANOVA to assess the effect of the treatment on cerebral blood flow with laser Doppler flowmetry, eNOS phosphorylation by immunoblot analysis, and stroke outcomes by infarct volumes and neurological deficits. RESULTS: Pretreatment with a 1064-nm laser at an irradiance of 50 mW/cm2 improved cerebral blood flow, eNOS phosphorylation, and stroke outcomes. CONCLUSIONS: Near-infrared II photobiomodulation could offer a noninvasive and low-risk adjunctive therapy for stroke injury. This new modality using a physical parameter merits further consideration to develop innovative therapies to prevent and treat a wide array of cardiovascular diseases.


Assuntos
Terapia com Luz de Baixa Intensidade , Óxido Nítrico Sintase Tipo III , Animais , Óxido Nítrico Sintase Tipo III/metabolismo , Camundongos , Fosforilação , Terapia com Luz de Baixa Intensidade/métodos , Masculino , Acidente Vascular Cerebral , Camundongos Endogâmicos C57BL , Infarto da Artéria Cerebral Média , Circulação Cerebrovascular/fisiologia , AVC Isquêmico/metabolismo , Modelos Animais de Doenças
2.
Platelets ; 35(1): 2313359, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38353233

RESUMO

Cyclic guanosine monophosphate (cGMP) is a second messenger produced by the NO-sensitive guanylyl cyclase (NO-GC). The NO-GC/cGMP pathway in platelets has been extensively studied. However, its role in regulating the biomechanical properties of platelets has not yet been addressed and remains unknown. We therefore investigated the stiffness of living platelets after treatment with the NO-GC stimulator riociguat or the NO-GC activator cinaciguat using scanning ion conductance microscopy (SICM). Stimulation of human and murine platelets with cGMP-modulating drugs decreased cellular stiffness and downregulated P-selectin, a marker for platelet activation. We also quantified changes in platelet shape using deep learning-based platelet morphometry, finding that platelets become more circular upon treatment with cGMP-modulating drugs. To test for clinical applicability of NO-GC stimulators in the context of increased thrombogenicity risk, we investigated the effect of riociguat on platelets from human immunodeficiency virus (HIV)-positive patients taking abacavir sulfate (ABC)-containing regimens. Our results corroborate a functional role of the NO-GC/cGMP pathway in platelet biomechanics, indicating that biomechanical properties such as stiffness or shape could be used as novel biomarkers in clinical research.


Increased platelet activation and development of thrombosis has been linked to a dysfunctional NO-GC/cGMP signaling pathway. How this pathway affects platelet stiffness, however, has not been studied yet. For the first time, we used novel microscopy techniques to investigate stiffness and shape of platelets in human and murine blood samples treated with cGMP modifying drugs. Stiffness contains information about biomechanical properties of the cytoskeleton, and shape quantifies the spreading behavior of platelets. We showed that the NO-GC/cGMP signaling pathway affects platelet stiffness, shape, and activation in human and murine blood. HIV-positive patients are often treated with medication that may disrupt the NO-GC/cGMP signaling pathway, leading to increased cardiovascular risk. We showed that treatment with cGMP-modifying drugs altered platelet shape and aggregation in blood from HIV-negative volunteers but not from HIV-positive patients treated with medication. Our study suggests that platelet stiffness and shape can be biomarkers for estimating cardiovascular risk.


Assuntos
Plaquetas , Transdução de Sinais , Humanos , Camundongos , Animais , Fenômenos Biomecânicos , Plaquetas/metabolismo , Guanilato Ciclase/metabolismo , Guanilato Ciclase/farmacologia , Ativação Plaquetária , GMP Cíclico/metabolismo , GMP Cíclico/farmacologia , Óxido Nítrico/metabolismo , Agregação Plaquetária
3.
FASEB J ; 36(9): e22490, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35929438

RESUMO

There is solid evidence of the beneficial effect of photobiomodulation (PBM) with low-power near-infrared (NIR) light in the NIR-I window in increasing bioavailable nitric oxide (NO). However, it is not established whether this effect can be extended to NIR-II light, limiting broader applications of this therapeutic modality. Since we have demonstrated PBM with NIR laser in the NIR-II window, we determined the causal relationship between NIR-II irradiation and its specific biological effects on NO bioavailability. We analyzed the impact of NIR-II irradiation on NO release in cultured human endothelial cells using a NO-sensitive fluorescence probe and single-cell live imaging. Two distinct wavelengths of NIR-II laser (1064 and 1270 nm) and NIR-I (808 nm) at an irradiance of 10 mW/cm2 induced NO release from endothelial cells. These lasers also enhanced Akt phosphorylation at Ser 473, endothelial nitric oxide synthase (eNOS) phosphorylation at Ser 1177, and endothelial cell migration. Moreover, the NO release and phosphorylation of eNOS were abolished by inhibiting mitochondrial respiration, suggesting that Akt activation caused by NIR-II laser exposure involves mitochondrial retrograde signaling. Other inhibitors that inhibit known Akt activation pathways, including a specific inhibitor of PI3K, Src family PKC, did not affect this response. These two wavelengths of NIR-II laser induced no appreciable NO generation in cultured neuronal cells expressing neuronal NOS (nNOS). In short, NIR-II laser enhances bioavailable NO in endothelial cells. Since a hallmark of endothelial dysfunction is suppressed eNOS with concomitant NO deficiency, NIR-II laser technology could be broadly used to restore endothelial NO and treat or prevent cardiovascular diseases.


Assuntos
Óxido Nítrico Sintase Tipo III , Óxido Nítrico , Células Cultivadas , Células Endoteliais/metabolismo , Humanos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo
4.
FASEB J ; 36(10): e22521, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36052742

RESUMO

Immunotherapy, including immune checkpoint inhibitors, has revolutionized cancer treatment, but only a minor fraction of patients shows durable responses. A new approach to overcome this limitation is yet to be identified. Recently, we have shown that photobiomodulation (PBM) with near-infrared (NIR) light in the NIR-II window reduces oxidative stress and supports the proliferation of CD8+ T cells, suggesting that PBM with NIR-II light could augment anti-cancer immunity. Here, we report a novel approach to support tumor-infiltrating CD8+ T cells upon PBM with NIR-II laser with high tissue penetration depth. Brief treatments of a murine model of breast cancer with dual 1064 and 1270 nm lasers reduced the expression of the programmed cell death protein 1 (PD-1) in CD8+ T cells in a syngeneic mouse model of breast cancer. The direct effect of the NIR-II laser treatment on T cells was confirmed by the enhanced tumor growth delay by the adoptive transfer of laser-treated CD8+ T cells ex vivo against a model tumor antigen. We further demonstrated that specific NIR-II laser parameters augmented the effect of the immune checkpoint inhibitor on tumor growth. PBM with NIR-II light augments the efficacy of cancer immunotherapy by supporting CD8+ T cells. Unlike the current immunotherapy with risks of undesirable drug-drug interactions and severe adverse events, the laser is safe and low-cost. It can be broadly combined with other therapy without modification to achieve clinical significance. In addition, our study established a path to develop a novel laser-based therapy to treat cancer effectively.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Animais , Imunoterapia , Lasers , Camundongos , Neoplasias/terapia , Oxirredução
6.
FASEB J ; 31(4): 1620-1638, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28138039

RESUMO

LIM domain proteins have been identified as essential modulators of cardiac biology and pathology; however, it is unclear which role the cysteine-rich LIM-only protein (CRP)4 plays in these processes. In studying CRP4 mutant mice, we found that their hearts developed normally, but lack of CRP4 exaggerated multiple parameters of the cardiac stress response to the neurohormone angiotensin II (Ang II). Aiming to dissect the molecular details, we found a link between CRP4 and the cardioprotective cGMP pathway, as well as a multiprotein complex comprising well-known hypertrophy-associated factors. Significant enrichment of the cysteine-rich intestinal protein (CRIP)1 in murine hearts lacking CRP4, as well as severe cardiac defects and premature death of CRIP1 and CRP4 morphant zebrafish embryos, further support the notion that depleting CRP4 is incompatible with a proper cardiac development and function. Together, amplified Ang II signaling identified CRP4 as a novel antiremodeling factor regulated, at least to some extent, by cardiac cGMP.-Straubinger, J., Boldt, K., Kuret, A., Deng, L., Krattenmacher, D., Bork, N., Desch, M., Feil, R., Feil, S., Nemer, M., Ueffing, M., Ruth, P., Just, S., Lukowski, R. Amplified pathogenic actions of angiotensin II in cysteine-rich LIM-only protein 4 negative mouse hearts.


Assuntos
Angiotensina II/metabolismo , Cardiomegalia/metabolismo , alfa-Defensinas/genética , Angiotensina II/farmacologia , Animais , Cardiomegalia/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células Cultivadas , GMP Cíclico/metabolismo , Coração/efeitos dos fármacos , Coração/crescimento & desenvolvimento , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Peixe-Zebra , alfa-Defensinas/metabolismo
7.
Circ Res ; 115(7): 662-7, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25070003

RESUMO

RATIONALE: Atherosclerosis is a widespread and devastating disease, but the origins of cells within atherosclerotic plaques are not well defined. OBJECTIVE: To investigate the specific contribution of vascular smooth muscle cells (SMCs) to atherosclerotic plaque formation by genetic inducible fate mapping in mice. METHODS AND RESULTS: Vascular SMCs were genetically pulse-labeled using the tamoxifen-dependent Cre recombinase, CreER(T2), expressed from the endogenous SM22α locus combined with Cre-activatable reporter genes that were integrated into the ROSA26 locus. Mature SMCs in the arterial media were labeled by tamoxifen treatment of young apolipoprotein E-deficient mice before the development of atherosclerosis and then their fate was monitored in older atherosclerotic animals. We found that medial SMCs can undergo clonal expansion and convert to macrophage-like cells that have lost classic SMC marker expression and make up a major component of advanced atherosclerotic lesions. CONCLUSIONS: This study provides strong in vivo evidence for smooth muscle-to-macrophage transdifferentiation and supports an important role of SMC plasticity in atherogenesis. Targeting this type of SMC phenotypic conversion might be a novel strategy for the treatment of atherosclerosis, as well as other diseases with a smooth muscle component.


Assuntos
Transdiferenciação Celular , Macrófagos/patologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Placa Aterosclerótica/patologia , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Macrófagos/metabolismo , Camundongos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Miócitos de Músculo Liso/metabolismo , Placa Aterosclerótica/metabolismo
8.
Mol Cell Proteomics ; 13(8): 2004-16, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24925903

RESUMO

The cyclic nucleotide cyclic guanosine monophosphate (cGMP) plays an important role in learning and memory, but its signaling mechanisms in the mammalian brain are not fully understood. Using mass-spectrometry-based proteomics, we evaluated how the cerebellum adapts its (phospho)proteome in a knockout mouse model of cGMP-dependent protein kinase type I (cGKI). Our data reveal that a small subset of proteins in the cerebellum (∼3% of the quantified proteins) became substantially differentially expressed in the absence of cGKI. More changes were observed at the phosphoproteome level, with hundreds of sites being differentially phosphorylated between wild-type and knockout cerebellum. Most of these phosphorylated sites do not represent known cGKI substrates. An integrative computational network analysis of the data indicated that the differentially expressed proteins and proteins harboring differentially phosphorylated sites largely belong to a tight network in the Purkinje cells of the cerebellum involving important cGMP/cAMP signaling nodes (e.g. PDE5 and PKARIIß) and Ca(2+) signaling (e.g. SERCA3). In this way, removal of cGKI could be linked to impaired cerebellar long-term depression at Purkinje cell synapses. In addition, we were able to identify a set of novel putative (phospho)proteins to be considered in this network. Overall, our data improve our understanding of cerebellar cGKI signaling and suggest novel players in cGKI-regulated synaptic plasticity.


Assuntos
Cerebelo/metabolismo , Proteína Quinase Dependente de GMP Cíclico Tipo I/genética , Fosfoproteínas/isolamento & purificação , Animais , GMP Cíclico , Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , Camundongos , Camundongos Knockout , Fosforilação , Proteômica/métodos , Transdução de Sinais , Sinapses/metabolismo
9.
PLoS Biol ; 10(3): e1001283, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22427743

RESUMO

Synaptic long-term potentiation (LTP) at spinal neurons directly communicating pain-specific inputs from the periphery to the brain has been proposed to serve as a trigger for pain hypersensitivity in pathological states. Previous studies have functionally implicated the NMDA receptor-NO pathway and the downstream second messenger, cGMP, in these processes. Because cGMP can broadly influence diverse ion-channels, kinases, and phosphodiesterases, pre- as well as post-synaptically, the precise identity of cGMP targets mediating spinal LTP, their mechanisms of action, and their locus in the spinal circuitry are still unclear. Here, we found that Protein Kinase G1 (PKG-I) localized presynaptically in nociceptor terminals plays an essential role in the expression of spinal LTP. Using the Cre-lox P system, we generated nociceptor-specific knockout mice lacking PKG-I specifically in presynaptic terminals of nociceptors in the spinal cord, but not in post-synaptic neurons or elsewhere (SNS-PKG-I(-/-) mice). Patch clamp recordings showed that activity-induced LTP at identified synapses between nociceptors and spinal neurons projecting to the periaqueductal grey (PAG) was completely abolished in SNS-PKG-I(-/-) mice, although basal synaptic transmission was not affected. Analyses of synaptic failure rates and paired-pulse ratios indicated a role for presynaptic PKG-I in regulating the probability of neurotransmitter release. Inositol 1,4,5-triphosphate receptor 1 and myosin light chain kinase were recruited as key phosphorylation targets of presynaptic PKG-I in nociceptive neurons. Finally, behavioural analyses in vivo showed marked defects in SNS-PKG-I(-/-) mice in several models of activity-induced nociceptive hypersensitivity, and pharmacological studies identified a clear contribution of PKG-I expressed in spinal terminals of nociceptors. Our results thus indicate that presynaptic mechanisms involving an increase in release probability from nociceptors are operational in the expression of synaptic LTP on spinal-PAG projection neurons and that PKG-I localized in presynaptic nociceptor terminals plays an essential role in this process to regulate pain sensitivity.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Potenciação de Longa Duração , Nociceptores/metabolismo , Dor/patologia , Aminoquinolinas/farmacologia , Animais , Comportamento Animal , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Proteína Quinase Dependente de GMP Cíclico Tipo I , Proteínas Quinases Dependentes de GMP Cíclico/genética , Ativação Enzimática , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Deleção de Genes , Guanilato Ciclase/antagonistas & inibidores , Guanilato Ciclase/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Fibras Nervosas/metabolismo , Fibras Nervosas/patologia , Nociceptores/efeitos dos fármacos , Nociceptores/patologia , Dor/metabolismo , Técnicas de Patch-Clamp , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Transdução de Sinais , Especificidade por Substrato , Transmissão Sináptica
10.
Circ Res ; 113(4): 365-71, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23801067

RESUMO

RATIONALE: Cyclic GMP (cGMP) is an important intracellular signaling molecule in the cardiovascular system, but its spatiotemporal dynamics in vivo is largely unknown. OBJECTIVE: To generate and characterize transgenic mice expressing the fluorescence resonance energy transfer-based ratiometric cGMP sensor, cGMP indicator with an EC50 of 500 nmol/L (cGi500), in cardiovascular tissues. METHODS AND RESULTS: Mouse lines with smooth muscle-specific or ubiquitous expression of cGi500 were generated by random transgenesis using an SM22α promoter fragment or by targeted integration of a Cre recombinase-activatable expression cassette driven by the cytomegalovirus early enhancer/chicken ß-actin/ß-globin promoter into the Rosa26 locus, respectively. Primary smooth muscle cells isolated from aorta, bladder, and colon of cGi500 mice showed strong sensor fluorescence. Basal cGMP concentrations were < 100 nmol/L, whereas stimulation with cGMP-elevating agents such as 2-(N,N-diethylamino)-diazenolate-2-oxide diethylammonium salt (DEA/NO) or the natriuretic peptides, atrial natriuretic peptide, and C-type natriuretic peptide evoked fluorescence resonance energy transfer changes corresponding to cGMP peak concentrations of ≈ 3 µmol/L. However, different types of smooth muscle cells had different sensitivities of their cGMP responses to DEA/NO, atrial natriuretic peptide, and C-type natriuretic peptide. Robust nitric oxide-induced cGMP transients with peak concentrations of ≈ 1 to > 3 µmol/L could also be monitored in blood vessels of the isolated retina and in the cremaster microcirculation of anesthetized mice. Moreover, with the use of a dorsal skinfold chamber model and multiphoton fluorescence resonance energy transfer microscopy, nitric oxide-stimulated vascular cGMP signals associated with vasodilation were detected in vivo in an acutely untouched preparation. CONCLUSIONS: These cGi500 transgenic mice permit the visualization of cardiovascular cGMP signals in live cells, tissues, and mice under normal and pathological conditions or during pharmacotherapy with cGMP-elevating drugs.


Assuntos
Sistema Cardiovascular/química , GMP Cíclico/análise , GMP Cíclico/genética , Transferência Ressonante de Energia de Fluorescência/métodos , Camundongos Transgênicos/genética , Transdução de Sinais/genética , Animais , Técnicas Biossensoriais/métodos , Camundongos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Modelos Animais , Músculo Liso/química , Músculo Liso Vascular/química
11.
Circ Res ; 109(9): 1015-23, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-21903939

RESUMO

RATIONALE: The hyperpolarization-activated current I(h) that is generated by hyperpolarization-activated cyclic nucleotide-gated channels (HCNs) plays a key role in the control of pacemaker activity in sinoatrial node cells of the heart. By contrast, it is unclear whether I(h) is also relevant for normal function of cardiac ventricles. OBJECTIVE: To study the role of the HCN3-mediated component of ventricular I(h) in normal ventricular function. METHODS AND RESULTS: To test the hypothesis that HCN3 regulates the ventricular action potential waveform, we have generated and analyzed a HCN3-deficient mouse line. At basal heart rate, mice deficient for HCN3 displayed a profound increase in the T-wave amplitude in telemetric electrocardiographic measurements. Action potential recordings on isolated ventricular myocytes indicate that this effect was caused by an acceleration of the late repolarization phase in epicardial myocytes. Furthermore, the resting membrane potential was shifted to more hyperpolarized potentials in HCN3-deficient mice. Cardiomyocytes of HCN3-deficient mice displayed approximately 30% reduction of total I(h). At physiological ionic conditions, the HCN3-mediated current had a reversal potential of approximately -35 mV and displayed ultraslow deactivation kinetics. CONCLUSIONS: We propose that HCN3 together with other members of the HCN channel family confer a depolarizing background current that regulates ventricular resting potential and counteracts the action of hyperpolarizing potassium currents in late repolarization. In conclusion, our data indicate that HCN3 plays an important role in shaping the cardiac action potential waveform.


Assuntos
Potenciais de Ação/fisiologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/fisiologia , Função Ventricular/fisiologia , Animais , Canais de Cátion Regulados por Nucleotídeos Cíclicos/deficiência , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Eletrocardiografia , Frequência Cardíaca/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Miócitos Cardíacos/fisiologia , Canais de Potássio , Nó Sinoatrial/fisiologia
12.
Br J Pharmacol ; 179(11): 2394-2412, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33880767

RESUMO

cGMP is an important signalling molecule in humans. Fluorescent cGMP biosensors have emerged as powerful tools for the sensitive analysis of cGMP pathways at the single-cell level. Here, we briefly outline cGMP's multifaceted role in (patho)physiology and pharmacotherapy. Then we summarise what new insights cGMP imaging has provided into endogenous cGMP signalling and drug action, with a focus on the cardiovascular system. Indeed, the use of cGMP biosensors has led to several conceptual advances, such as the discovery of local, intercellular and mechanosensitive cGMP signals. Importantly, single-cell imaging can provide valuable information about the heterogeneity of cGMP signals within and between individual cells of an isolated cell population or tissue. We also discuss current challenges and future directions of cGMP imaging, such as the direct visualisation of cGMP microdomains, simultaneous monitoring of cGMP and other signalling molecules and, ultimately, cGMP imaging in tissues and animals under close-to-native conditions. LINKED ARTICLES: This article is part of a themed issue on cGMP Signalling in Cell Growth and Survival. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.11/issuetoc.


Assuntos
Sistema Cardiovascular , GMP Cíclico , Animais , Sistema Cardiovascular/metabolismo , GMP Cíclico/metabolismo , Transdução de Sinais
13.
STAR Protoc ; 3(3): 101645, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36042879

RESUMO

Here, we describe an in vivo approach to visualize CD11c+ cells in atherosclerosis. In particular, we use a protocol for X-Gal staining of immune cells within atherosclerotic plaques, which can be used as an alternative to analyze plaque composition and cell-specific molecules in atherogenesis. LacZ knockin mice have to be bred to mice carrying the CD11ccre recombinase-both brought onto an ApoE-/- background-to be able to visualize this cell type of interest in the plaques by X-Gal staining. With this approach, different immune cells in atherogenesis can be examined. For complete details on the use and execution of this protocol, please refer to Sauter et al. (2021).


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Aterosclerose/genética , Antígeno CD11c/genética , Óperon Lac/genética , Camundongos , Camundongos Knockout , Placa Aterosclerótica/genética
14.
Open Biol ; 12(8): 220058, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35975649

RESUMO

Cyclic guanosine monophosphate (cGMP) signalling plays a fundamental role in many cell types, including platelets. cGMP has been implicated in platelet formation, but mechanistic detail about its spatio-temporal regulation in megakaryocytes (MKs) is lacking. Optogenetics is a technique which allows spatio-temporal manipulation of molecular events in living cells or organisms. We took advantage of this method and expressed a photo-activated guanylyl cyclase, Blastocladiella emersonii Cyclase opsin (BeCyclop), after viral-mediated gene transfer in bone marrow (BM)-derived MKs to precisely light-modulate cGMP levels. BeCyclop-MKs showed a significantly increased cGMP concentration after illumination, which was strongly dependent on phosphodiesterase (PDE) 5 activity. This finding was corroborated by real-time imaging of cGMP signals which revealed that pharmacological PDE5 inhibition also potentiated nitric oxide-triggered cGMP generation in BM MKs. In summary, we established for the first-time optogenetics in primary MKs and show that PDE5 is the predominant PDE regulating cGMP levels in MKs. These findings also demonstrate that optogenetics allows for the precise manipulation of MK biology.


Assuntos
Guanosina Monofosfato , Megacariócitos , Blastocladiella , GMP Cíclico/metabolismo , Megacariócitos/metabolismo , Óxido Nítrico/metabolismo , Optogenética , Diester Fosfórico Hidrolases
15.
Br J Pharmacol ; 179(11): 2476-2489, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34096053

RESUMO

BACKGROUND AND PURPOSE: Generation of cGMP via NO-sensitive soluble guanylyl cyclase (sGC) has been implicated in the regulation of renal functions. Chronic kidney disease (CKD) is associated with decreased NO bioavailability, increased oxidative stress and oxidation of sGC to its haem-free form, apo-sGC. Apo-sGC cannot be activated by NO, resulting in impaired cGMP signalling that is associated with chronic kidney disease progression. We hypothesised that sGC activators, which activate apo-sGC independently of NO, increase renal cGMP production under conditions of oxidative stress, thereby improving renal blood flow (RBF) and kidney function. EXPERIMENTAL APPROACH: Two novel sGC activators, runcaciguat and BAY-543, were tested on murine kidney. We measured cGMP levels in real time in kidney slices of cGMP sensor mice, vasodilation of pre-constricted glomerular arterioles and RBF in isolated perfused kidneys. Experiments were performed at baseline conditions, under L-NAME-induced NO deficiency, and in the presence of oxidative stress induced by ODQ. KEY RESULTS: Mouse glomeruli showed NO-induced cGMP increases. Under baseline conditions, sGC activator did not alter glomerular cGMP concentration or NO-induced cGMP generation. In the presence of ODQ, NO-induced glomerular cGMP signals were markedly reduced, whereas sGC activator induced strong cGMP increases. L-NAME and ODQ pretreated isolated glomerular arterioles were strongly dilated by sGC activator. sGC activator also increased cGMP and RBF in ODQ-perfused kidneys. CONCLUSION AND IMPLICATION: sGC activators increase glomerular cGMP, dilate glomerular arterioles and improve RBF under disease-relevant oxidative stress conditions. Therefore, sGC activators represent a promising class of drugs for chronic kidney disease treatment. LINKED ARTICLES: This article is part of a themed issue on cGMP Signalling in Cell Growth and Survival. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.11/issuetoc.


Assuntos
Insuficiência Renal Crônica , Vasodilatação , Animais , GMP Cíclico , Feminino , Guanilato Ciclase , Humanos , Rim , Masculino , Camundongos , NG-Nitroarginina Metil Éster , Óxido Nítrico , Insuficiência Renal Crônica/tratamento farmacológico , Guanilil Ciclase Solúvel
16.
Bioorg Med Chem Lett ; 21(23): 7089-93, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22030030

RESUMO

PDE4 inhibitors have been identified as therapeutic targets for a variety of conditions, particularly inflammatory diseases. We have serendipitously identified a novel class of phosphodiesterase 4 (PDE4) inhibitor during a study to discover antagonists of the parathyroid hormone receptor. X-ray crystallographic studies of PDE4D2 complexed to four potent inhibitors reveal the atomic details of how they inhibit the enzyme and a notable contrast to another recently reported thiophene-based inhibitor.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/química , Modelos Moleculares , Inibidores da Fosfodiesterase 4/química , Tiofenos/síntese química , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Inibidores da Fosfodiesterase 4/síntese química , Ligação Proteica , Tiofenos/química , Tiofenos/farmacologia
17.
Proc Natl Acad Sci U S A ; 105(18): 6771-6, 2008 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-18443297

RESUMO

To explore the functional significance of cGMP-dependent protein kinase type I (cGKI) in the regulation of erythrocyte survival, gene-targeted mice lacking cGKI were compared with their control littermates. By the age of 10 weeks, cGKI-deficient mice exhibited pronounced anemia and splenomegaly. Compared with control mice, the cGKI mutants had significantly lower red blood cell count, packed cell volume, and hemoglobin concentration. Anemia was associated with a higher reticulocyte number and an increase of plasma erythropoietin concentration. The spleens of cGKI mutant mice were massively enlarged and contained a higher fraction of Ter119(+) erythroid cells, whereas the relative proportion of leukocyte subpopulations was not changed. The Ter119(+) cGKI-deficient splenocytes showed a marked increase in annexin V binding, pointing to phosphatidylserine (PS) exposure at the outer membrane leaflet, a hallmark of suicidal erythrocyte death or eryptosis. Compared with control erythrocytes, cGKI-deficient erythrocytes exhibited in vitro a higher cytosolic Ca(2+) concentration, a known trigger of eryptosis, and showed increased PS exposure, which was paralleled by a faster clearance in vivo. Together, these results identify a role of cGKI as mediator of erythrocyte survival and extend the emerging concept that cGMP/cGKI signaling has an antiapoptotic/prosurvival function in a number of cell types in vivo.


Assuntos
Anemia/complicações , Anemia/enzimologia , Proteínas Quinases Dependentes de GMP Cíclico/deficiência , Esplenomegalia/complicações , Esplenomegalia/enzimologia , Animais , Cálcio/metabolismo , Tamanho Celular , Proteína Quinase Dependente de GMP Cíclico Tipo I , Eritrócitos/enzimologia , Eritrócitos/patologia , Fluoresceínas/metabolismo , Espaço Intracelular/metabolismo , Camundongos , Succinimidas/metabolismo
18.
Br J Pharmacol ; 178(17): 3463-3475, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33864386

RESUMO

BACKGROUND AND PURPOSE: Reduced bioavailability of NO, a hallmark of sickle cell disease (SCD), contributes to intravascular inflammation, vasoconstriction, vaso-occlusion and organ damage observed in SCD patients. Soluble guanylyl cyclase (sGC) catalyses synthesis of cGMP in response to NO. cGMP-amplifying agents, including NO donors and phosphodiesterase 9 inhibitors, alleviate TNFα-induced inflammation in wild-type C57BL/6 mice and in 'humanised' mouse models of SCD. EXPERIMENTAL APPROACH: Effects of the sGC stimulator olinciguat on intravascular inflammation and renal injury were studied in acute (C57BL6 and Berkeley mice) and chronic (Townes mice) mouse models of TNFα-induced and systemic inflammation associated with SCD. KEY RESULTS: Acute treatment with olinciguat attenuated increases in plasma biomarkers of endothelial cell activation and leukocyte-endothelial cell interactions in TNFα-challenged mice. Co-treatment with hydroxyurea, an FDA-approved SCD therapeutic agent, further augmented the anti-inflammatory effect of olinciguat. In the Berkeley mouse model of TNFα-induced vaso-occlusive crisis, a single dose of olinciguat attenuated leukocyte-endothelial cell interactions, improved blood flow and prolonged survival time compared to vehicle-treated mice. In Townes SCD mice, plasma biomarkers of inflammation and endothelial cell activation were lower in olinciguat- than in vehicle-treated mice. In addition, kidney mass, water consumption, 24-h urine excretion, plasma levels of cystatin C and urinary excretion of N-acetyl-ß-d-glucosaminidase and neutrophil gelatinase-associated lipocalin were lower in Townes mice treated with olinciguat than in vehicle-treated mice. CONCLUSION AND IMPLICATIONS: Our results suggest that the sGC stimulator olinciguat attenuates inflammation, vaso-occlusion and kidney injury in mouse models of SCD and systemic inflammation.


Assuntos
Anemia Falciforme , Doenças Vasculares , Anemia Falciforme/complicações , Anemia Falciforme/tratamento farmacológico , Animais , Humanos , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Guanilil Ciclase Solúvel
19.
J Neurosci ; 29(48): 15155-60, 2009 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-19955367

RESUMO

The cGMP-dependent protein kinase type I (cGKI) has multiple functions including a role in axonal growth and pathfinding of sensory neurons, and counteracts Semaphorin 3A (Sema3A)-induced growth cone collapse. Within the nervous system, however, the transcriptional regulation of cGKI is still obscure. Recently, the transcription factor and tumor suppressor p53 has been reported to promote neurite outgrowth by regulating the gene expression of factors that promote growth cone extension, but specific p53 targets genes that may counteract growth cone collapse have not been identified so far. Here, we show that p53 promotes cGKI expression in neuronal-like PC-12 cells and primary neurons by occupying specific regulatory elements in a chromatin environment during neuronal maturation. Importantly, we demonstrate that p53-dependent expression of cGKI is required for the ability of cGMP to counteract growth cone collapse. Growth cone retraction mediated by Sema3A is overcome by cGMP only in wild-type, but not in p53-null dorsal root ganglia. Reconstitution of p53 levels is sufficient to recover both cGKI expression and the ability of cGMP to counteract growth cone collapse, while cGKI overexpression rescues growth cone collapse in p53-null primary neurons. In conclusion, this study identifies p53 as a transcription factor that regulates the expression of cGKI during neuronal maturation and cGMP-dependent inhibition of growth cone collapse.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Cones de Crescimento/fisiologia , Neurônios/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Córtex Cerebral/citologia , Chlorocebus aethiops , Imunoprecipitação da Cromatina/métodos , GMP Cíclico/análogos & derivados , GMP Cíclico/farmacologia , Proteína Quinase Dependente de GMP Cíclico Tipo I , Proteínas Quinases Dependentes de GMP Cíclico/deficiência , Embrião de Mamíferos , Gânglios Espinais/citologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Fluorescência Verde/genética , Cones de Crescimento/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética , Neurônios/citologia , Neurônios/efeitos dos fármacos , Técnicas de Cultura de Órgãos , RNA Mensageiro/metabolismo , Ratos , Semaforina-3A/genética , Transfecção/métodos , Proteína Supressora de Tumor p53/deficiência
20.
Basic Res Cardiol ; 105(5): 583-95, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20352235

RESUMO

Cardiac atrial natriuretic peptide (ANP) locally counteracts cardiac hypertrophy via the guanylyl cyclase-A (GC-A) receptor and cGMP production, but the downstream signalling pathways are unknown. Here, we examined the influence of ANP on beta-adrenergic versus Angiotensin II (Ang II)-dependent (G(s) vs. G(alphaq) mediated) modulation of Ca(2+) (i)-handling in cardiomyocytes and of hypertrophy in intact hearts. L-type Ca(2+) currents and Ca(2+) (i) transients in adult isolated murine ventricular myocytes were studied by voltage-clamp recordings and fluorescence microscopy. ANP suppressed Ang II-stimulated Ca(2+) currents and transients, but had no effect on isoproterenol stimulation. Ang II suppression by ANP was abolished in cardiomyocytes of mice deficient in GC-A, in cyclic GMP-dependent protein kinase I (PKG I) or in the regulator of G protein signalling (RGS) 2, a target of PKG I. Cardiac hypertrophy in response to exogenous Ang II was significantly exacerbated in mice with conditional, cardiomyocyte-restricted GC-A deletion (CM GC-A KO). This was concomitant to increased activation of the Ca(2+)/calmodulin-dependent prohypertrophic signal transducer CaMKII. In contrast, beta-adrenoreceptor-induced hypertrophy was not enhanced in CM GC-A KO mice. Lastly, while the stimulatory effects of Ang II on Ca(2+)-handling were absent in myocytes of mice deficient in TRPC3/TRPC6, the effects of isoproterenol were unchanged. Our data demonstrate a direct myocardial role for ANP/GC-A/cGMP to antagonize the Ca(2+) (i)-dependent hypertrophic growth response to Ang II, but not to beta-adrenergic stimulation. The selectivity of this interaction is determined by PKG I and RGS2-dependent modulation of Ang II/AT(1) signalling. Furthermore, they strengthen published observations in neonatal cardiomyocytes showing that TRPC3/TRPC6 channels are essential for Ang II, but not for beta-adrenergic Ca(2+) (i)-stimulation in adult myocytes.


Assuntos
Fator Natriurético Atrial/metabolismo , Cardiomegalia , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Miócitos Cardíacos/fisiologia , Proteínas RGS/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Angiotensina II/farmacologia , Animais , Cálcio/metabolismo , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Linhagem Celular , Proteínas Quinases Dependentes de GMP Cíclico/genética , Humanos , Isoproterenol/farmacologia , Rim/citologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Knockout , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Técnicas de Patch-Clamp , Receptores do Fator Natriurético Atrial/genética , Receptores do Fator Natriurético Atrial/metabolismo , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo , Canal de Cátion TRPC6 , Vasoconstritores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA