Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acta Biomater ; 151: 317-332, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35902037

RESUMO

Several animal and human studies have now established the potential of low intensity, low frequency transcranial ultrasound (TUS) for non-invasive neuromodulation. Paradoxically, the underlying mechanisms through which TUS neuromodulation operates are still unclear, and a consensus on the identification of optimal sonication parameters still remains elusive. One emerging hypothesis based on thermodynamical considerations attributes the acoustic-induced nerve activity alterations to the mechanical energy and/or entropy conversions occurring during TUS action. Here, we propose a multiscale modelling framework to examine the energy states of neuromodulation under TUS. First, macroscopic tissue-level acoustic simulations of the sonication of a whole monkey brain are conducted under different sonication protocols. For each one of them, mechanical loading conditions of the received waves in the anterior cingulate cortex region are recorded and exported into a microscopic cell-level 3D viscoelastic finite element model of a neuronal axon embedded in extracellular medium. Pulse-averaged elastically stored and viscously dissipated energy rate densities during axon deformation are finally computed under different sonication incident angles and are mapped against distinct combinations of sonication parameters of the TUS. The proposed multiscale framework allows for the analysis of vibrational patterns of the axons and its comparison against the spectrograms of stimulating ultrasound. The results are in agreement with literature data on neuromodulation, demonstrating the potential of this framework to identify optimised acoustic parameters in TUS neuromodulation. The proposed approach is finally discussed in the context of multiphysics energetic considerations, argued here to be a promising avenue towards a scalable framework for TUS in silico predictions. STATEMENT OF SIGNIFICANCE: Low-intensity transcranial ultrasound (TUS) is poised to become a leading neuromodulation technique for the treatment of neurological disorders. Paradoxically, how it operates at the cellular scale remains unknown, hampering progress in personalised treatment. To this end, models of the multiphysics of neurons able to upscale results to the organ scale are required. We propose here to achieve this by considering an axon submitted to an ultrasound wave extracted from a simulation at the organ scale. Doing so, information pertaining to both stored and dissipated axonal energies can be extracted for a given head/brain morphology. This two-scale multiphysics energetic approach is a promising scalable framework for in silico predictions in the context of personalised TUS treatment.


Assuntos
Encéfalo , Neurônios , Animais , Encéfalo/fisiologia , Simulação por Computador , Humanos , Ondas Ultrassônicas , Ultrassonografia
2.
Comput Biol Med ; 140: 105094, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34920363

RESUMO

Low-intensity transcranial ultrasound stimulation (TUS) is poised to become one of the most promising treatments for neurological disorders. However, while recent animal model experiments have successfully quantified the alterations of the functional activity coupling between a sonicated target cortical region and other cortical regions of interest (ROIs), the varying degree of alteration between these different connections remains unexplained. We hypothesise here that the incidental sonication of the tracts leaving the target region towards the different ROIs could participate in explaining these differences. To this end, we propose a tissue level phenomenological numerical model of the coupling between the ultrasound waves and the white matter electrical activity. The model is then used to reproduce in silico the sonication of the anterior cingulate cortex (ACC) of a macaque monkey and measure the neuromodulation power within the white matter tracts leaving the ACC for five cortical ROIs. The results show that the more induced power a white matter tract proximal to the ACC and connected to a secondary ROI receives, the more altered the connectivity fingerprint of the ACC to this region will be after sonication. These results point towards the need to isolate the sonication to the cortical region and minimise the spillage on the neighbouring tracts when aiming at modulating the target region without losing the functional connectivity with other ROIs. Those results further emphasise the potential role of the white matter in TUS and the need to account for white matter topology when designing TUS protocols.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA