Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
EMBO Rep ; 22(8): e52905, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34190393

RESUMO

Planarians are able to stand long periods of starvation by maintaining adult stem cell pools and regenerative capacity. The molecular pathways that are needed for the maintenance of regeneration during starvation are not known. Here, we show that down-regulation of chaperonin TRiC/CCT subunits abrogates the regeneration capacity of planarians during starvation, but TRiC/CCT subunits are dispensable for regeneration in fed planarians. Under starvation, they are required to maintain mitotic fidelity and for blastema formation. We show that TRiC subunits modulate the unfolded protein response (UPR) and are required to maintain ATP levels in starved planarians. Regenerative defects in starved CCT-depleted planarians can be rescued by either chemical induction of mild endoplasmic reticulum stress, which leads to induction of the UPR, or by the supplementation of fatty acids. Together, these results indicate that CCT-dependent UPR induction promotes regeneration of planarians under food restriction.


Assuntos
Planárias , Animais , Chaperonina com TCP-1 , Regulação para Baixo , Planárias/genética , Resposta a Proteínas não Dobradas
2.
EMBO Rep ; 22(1): e49328, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33300287

RESUMO

Lipid metabolism influences stem cell maintenance and differentiation but genetic factors that control these processes remain to be delineated. Here, we identify Tnfaip2 as an inhibitor of reprogramming of mouse fibroblasts into induced pluripotent stem cells. Tnfaip2 knockout impairs differentiation of embryonic stem cells (ESCs), and knockdown of the planarian para-ortholog, Smed-exoc3, abrogates in vivo tissue homeostasis and regeneration-processes that are driven by somatic stem cells. When stimulated to differentiate, Tnfaip2-deficient ESCs fail to induce synthesis of cellular triacylglycerol (TAG) and lipid droplets (LD) coinciding with reduced expression of vimentin (Vim)-a known inducer of LD formation. Smed-exoc3 depletion also causes a strong reduction of TAGs in planarians. The study shows that Tnfaip2 acts epistatically with and upstream of Vim in impairing cellular reprogramming. Supplementing palmitic acid (PA) and palmitoyl-L-carnitine (the mobilized form of PA) restores the differentiation capacity of Tnfaip2-deficient ESCs and organ maintenance in Smed-exoc3-depleted planarians. Together, these results identify a novel role of Tnfaip2 and exoc3 in controlling lipid metabolism, which is essential for ESC differentiation and planarian organ maintenance.


Assuntos
Metabolismo dos Lipídeos , Planárias , Animais , Diferenciação Celular , Homeostase , Metabolismo dos Lipídeos/genética , Camundongos , Planárias/genética , Interferência de RNA
3.
Semin Cell Dev Biol ; 87: 169-181, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29705301

RESUMO

All living forms, prokaryotes as eukaryotes, have some means of adaptation to food scarcity, which extends the survival chances under extreme environmental conditions. Nowadays we know that dietary interventions, including fasting, extends lifespan of many organisms and can also protect against age-related diseases including in humans. Therefore, the capacity of adapting to periods of food scarcity may have evolved billions of years ago not only to allow immediate organismal survival but also to be able to extend organismal lifespan or at least to lead to a healthier remaining lifespan. Planarians have been the center of attention since more than two centuries because of their astonishing power of full body regeneration that relies on a large amount of adult stem cells or neoblasts. However, they also present an often-overlooked characteristic. They are able to stand long time starvation. Planarians have adapted to periods of fasting by shrinking or degrowing. Here we will review the published data about starvation in planarians and conclude with the possibility of starvation being one of the processes that rejuvenate the planarian, thus explaining the historical notion of non-ageing planarians.


Assuntos
Privação de Alimentos/fisiologia , Planárias/metabolismo , Animais , Jejum , Humanos , Planárias/citologia , Regeneração , Rejuvenescimento
4.
Development ; 140(4): 730-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23318635

RESUMO

Recent advances in a number of systems suggest many genes involved in orchestrating regeneration are redeployed from similar processes in development, with others being novel to the regeneration process in particular lineages. Of particular importance will be understanding the architecture of regenerative genetic regulatory networks and whether they are conserved across broad phylogenetic distances. Here, we describe the role of the conserved TALE class protein PBX/Extradenticle in planarians, a representative member of the Lophotrocozoa. PBX/Extradenticle proteins play central roles in both embryonic and post-embryonic developmental patterning in both vertebrates and insects, and we demonstrate a broad requirement during planarian regeneration. We observe that Smed-pbx has pleiotropic functions during regeneration, with a primary role in patterning the anterior-posterior (AP) axis and AP polarity. Smed-pbx is required for expression of polarity determinants notum and wnt1 and for correct patterning of the structures polarized along the AP axis, such as the brain, pharynx and gut. Overall, our data suggest that Smed-pbx functions as a central integrator of positional information to drive patterning of regeneration along the body axis.


Assuntos
Padronização Corporal/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Redes Reguladoras de Genes/fisiologia , Proteínas de Homeodomínio/fisiologia , Planárias/fisiologia , Regeneração/fisiologia , Fatores de Transcrição/fisiologia , Animais , Sequência de Bases , Clonagem Molecular , Primers do DNA/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Homeodomínio/genética , Imuno-Histoquímica , Hibridização In Situ , Microscopia de Fluorescência , Dados de Sequência Molecular , Faringe/cirurgia , Interferência de RNA , Análise de Sequência de DNA , Fatores de Transcrição/genética
5.
Proc Natl Acad Sci U S A ; 109(11): 4209-14, 2012 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-22371573

RESUMO

In most sexually reproducing animals, replication and maintenance of telomeres occurs in the germ line and during early development in embryogenesis through the use of telomerase. Somatic cells generally do not maintain telomere sequences, and these cells become senescent in adults as telomeres shorten to a critical length. Some animals reproduce clonally and must therefore require adult somatic mechanisms for maintaining their chromosome ends. Here we study the telomere biology of planarian flatworms with apparently limitless regenerative capacity fueled by a population of highly proliferative adult stem cells. We show that somatic telomere maintenance is different in asexual and sexual animals. Asexual animals maintain telomere length somatically during reproduction by fission or when regeneration is induced by amputation, whereas sexual animals only achieve telomere elongation through sexual reproduction. We demonstrate that this difference is reflected in the expression and alternate splicing of the protein subunit of the telomerase enzyme. Asexual adult planarian stem cells appear to maintain telomere length over evolutionary timescales without passage through a germ-line stage. The adaptations we observe demonstrate indefinite somatic telomerase activity in proliferating stem cells during regeneration or reproduction by fission, and establish planarians as a pertinent model for studying telomere structure, function, and maintenance.


Assuntos
Regulação da Expressão Gênica , Planárias/enzimologia , Planárias/genética , Reprodução Assexuada/genética , Telomerase/metabolismo , Homeostase do Telômero/genética , Telômero/metabolismo , Processamento Alternativo/genética , Animais , Células Germinativas/metabolismo , Hibridização In Situ , Dados de Sequência Molecular , Planárias/crescimento & desenvolvimento , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regeneração/genética , Células-Tronco/citologia , Células-Tronco/metabolismo
6.
PLoS Genet ; 8(3): e1002619, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22479207

RESUMO

Planarian flatworms are able to both regenerate their whole bodies and continuously adapt their size to nutrient status. Tight control of stem cell proliferation and differentiation during these processes is the key feature of planarian biology. Here we show that the planarian homolog of the phosphoinositide 3-kinase-related kinase (PIKK) family member SMG-1 and mTOR complex 1 components are required for this tight control. Loss of smg-1 results in a hyper-responsiveness to injury and growth and the formation of regenerative blastemas that remain undifferentiated and that lead to lethal ectopic outgrowths. Invasive stem cell hyper-proliferation, hyperplasia, hypertrophy, and differentiation defects are hallmarks of this uncontrolled growth. These data imply a previously unappreciated and novel physiological function for this PIKK family member. In contrast we found that planarian members of the mTOR complex 1, tor and raptor, are required for the initial response to injury and blastema formation. Double smg-1 RNAi experiments with tor or raptor show that abnormal growth requires mTOR signalling. We also found that the macrolide rapamycin, a natural compound inhibitor of mTORC1, is able to increase the survival rate of smg-1 RNAi animals by decreasing cell proliferation. Our findings support a model where Smg-1 acts as a novel regulator of both the response to injury and growth control mechanisms. Our data suggest the possibility that this may be by suppressing mTOR signalling. Characterisation of both the planarian mTORC1 signalling components and another PIKK family member as key regulators of regeneration and growth will influence future work on regeneration, growth control, and the development of anti-cancer therapies that target mTOR signalling.


Assuntos
Planárias , Regeneração , Células-Tronco , Serina-Treonina Quinases TOR/genética , Animais , Diferenciação Celular , Proliferação de Células/efeitos dos fármacos , Humanos , Dados de Sequência Molecular , Fosfatidilinositol 3-Quinases/genética , Planárias/genética , Planárias/crescimento & desenvolvimento , Interferência de RNA/efeitos dos fármacos , Regeneração/genética , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Células-Tronco/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo
7.
Proc Natl Acad Sci U S A ; 108(29): 11959-64, 2011 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-21712439

RESUMO

Segmental identity along the anteroposterior axis of bilateral animals is specified by Hox genes. These genes encode transcription factors, harboring the conserved homeodomain and, generally, a YPWM motif, which binds Hox cofactors and increases Hox transcriptional specificity in vivo. Here we derive synthetic Drosophila Antennapedia genes, consisting only of the YPWM motif and homeodomain, and investigate their functional role throughout development. Synthetic peptides and full-length Antennapedia proteins cause head-to-thorax transformations in the embryo, as well as antenna-to-tarsus and eye-to-wing transformations in the adult, thus converting the entire head to a mesothorax. This conversion is achieved by repression of genes required for head and antennal development and ectopic activation of genes promoting thoracic and tarsal fates, respectively. Synthetic Antennapedia peptides bind DNA specifically and interact with Extradenticle and Bric-à-brac interacting protein 2 cofactors in vitro and ex vivo. Substitution of the YPWM motif by alanines abolishes Antennapedia homeotic function, whereas substitution of YPWM by the WRPW repressor motif, which binds the transcriptional corepressor Groucho, allows all proteins to act as repressors only. Finally, naturally occurring variations in the size of the linker between the homeodomain and YPWM motif enhance Antennapedia repressive or activating efficiency, emphasizing the importance of linker size, rather than sequence, for specificity. Our results clearly show that synthetic Antennapedia genes are functional in vivo and therefore provide powerful tools for synthetic biology. Moreover, the YPWM motif is necessary--whereas the entire N terminus of the protein is dispensable--for Antennapedia homeotic function, indicating its dual role in transcriptional activation and repression by recruiting either coactivators or corepressors.


Assuntos
Motivos de Aminoácidos/genética , Proteína do Homeodomínio de Antennapedia/genética , Padronização Corporal/genética , Proteínas de Drosophila/genética , Drosophila/embriologia , Regulação da Expressão Gênica/genética , Animais , Proteína do Homeodomínio de Antennapedia/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Drosophila/genética , Proteínas de Drosophila/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Técnicas de Transferência de Genes , Genes Sintéticos/genética , Proteínas de Homeodomínio/metabolismo , Imuno-Histoquímica , Plasmídeos/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo
8.
PLoS Genet ; 6(4): e1000915, 2010 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-20422023

RESUMO

Planaria continue to blossom as a model system for understanding all aspects of regeneration. They provide an opportunity to understand how the replacement of missing tissues from preexisting adult tissue is orchestrated at the molecular level. When amputated along any plane, planaria are capable of regenerating all missing tissue and rescaling all structures to the new size of the animal. Recently, rapid progress has been made in understanding the developmental pathways that control planarian regeneration. In particular Wnt/beta-catenin signaling is central in promoting posterior fates and inhibiting anterior identity. Currently the mechanisms that actively promote anterior identity remain unknown. Here, Smed-prep, encoding a TALE class homeodomain, is described as the first gene necessary for correct anterior fate and patterning during planarian regeneration. Smed-prep is expressed at high levels in the anterior portion of whole animals, and Smed-prep(RNAi) leads to loss of the whole brain during anterior regeneration, but not during lateral regeneration or homeostasis in intact worms. Expression of markers of different anterior fated cells are greatly reduced or lost in Smed-prep(RNAi) animals. We find that the ectopic anterior structures induced by abrogation of Wnt signaling also require Smed-prep to form. We use double knockdown experiments with the S. mediterranea ortholog of nou-darake (that when knocked down induces ectopic brain formation) to show that Smed-prep defines an anterior fated compartment within which stem cells are permitted to assume brain fate, but is not required directly for this differentiation process. Smed-prep is the first gene clearly implicated as being necessary for promoting anterior fate and the first homeobox gene implicated in establishing positional identity during regeneration. Together our results suggest that Smed-prep is required in stem cell progeny as they form the anterior regenerative blastema and is required for specifying anterior cell fates and correct patterning.


Assuntos
Embrião não Mamífero/metabolismo , Genes Homeobox , Proteínas de Helminto/genética , Regeneração/genética , Turbelários/embriologia , Animais , Padronização Corporal , Diferenciação Celular , Genes de Helmintos , Cabeça/fisiologia , Hibridização In Situ
9.
Cureus ; 14(5): e25498, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35663692

RESUMO

Emphysematous pyelonephritis (EPN) is an acute life-threatening necrotizing infection of the renal parenchyma and perirenal tissues. There are multiple treatment strategies for EPN depending on the initial classification; over the last three decades, the treatment approach has favored kidney sparing strategies and the use of nephrectomy only as salvage therapy. We report a case involving a patient with unilateral emphysematous pyelonephritis complicated with hyperglycemic hyperosmolar state (HHS), sepsis, and multiple risk factors associated with poor prognosis who was successfully treated with conservative management sparing nephrectomy. This case report aims to create awareness among clinicians that even in the presence of multiple risk factors for poor prognosis, conservative management should be considered before nephrectomy.

10.
Cureus ; 14(6): e25818, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35698468

RESUMO

Empagliflozin-induced euglycemic diabetic ketoacidosis is a life-threatening metabolic complication of diabetes mellitus characterized by metabolic acidosis, ketonemia, and relatively normal serum glucose levels. We present a rare case of empagliflozin-induced diabetic ketoacidosis obscured by alkalosis. This case report aims to create awareness among clinicians about this entity and consider this diagnosis in their differential, especially in patients taking sodium-glucose co-transporter (SGLT-2) inhibitors who present to the hospital with unspecific symptoms that may not suggest DKA.

11.
ACS Omega ; 5(50): 32403-32410, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33376877

RESUMO

Determination of reducing sugars is carried out routinely in the food industry, in biological research, or pharmaceutical and biomedical quality control to estimate metabolically assimilable sugars. Widespread detection methods are complex, expensive, or highly polluting. Here, we propose the use of spectrophotometric quantification for reducing sugars (Benedictq) based on the qualitative method of Benedict. The protocol was validated, to verify its reproducibility and precision. With the proposed method (Benedictq), the reducing sugar glucose can be determined in a range of 0.167-10 mg mL-1, with an R 2 of 0.997 and accuracy (expressed as % of recovery) greater than 97%. Other reducing sugars, such as maltose, fructose, and lactose, showed similar values. The method robustness was verified for pH values greater than or equal to 4. In the case of protein presence, a correction is proposed in the range of 0-1.67 mg mL-1. Modifications implemented in the protocol reduce cost, working time, and reaction volumes with respect to the original assay without detriments in accuracy and precision. In addition, waste reduction represents an important contribution of the method.

12.
Stem Cell Reports ; 13(2): 405-418, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31353226

RESUMO

Reduction of caloric intake delays and prevents age-associated diseases and extends the life span in many organisms. It may be that these benefits are due to positive effects of caloric restriction on stem cell function. We use the planarian model Schmidtea mediterranea, an immortal animal that adapts to long periods of starvation by shrinking in size, to investigate the effects of starvation on telomere length. We show that the longest telomeres are a general signature of planarian adult stem cells. We also observe that starvation leads to an enrichment of stem cells with the longest telomeres and that this enrichment is dependent on mTOR signaling. We propose that one important effect of starvation for the rejuvenation of the adult stem cell pool is through increasing the median telomere length in somatic stem cells. Such a mechanism has broad implications for how dietary effects on aging are mediated at the whole-organism level.


Assuntos
Planárias/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Telômero/genética , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Animais , Proteínas Argonautas/antagonistas & inibidores , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Regulação para Baixo , Proteínas de Helminto/antagonistas & inibidores , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Modelos Biológicos , Planárias/genética , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , Transdução de Sinais , Inanição , Homeostase do Telômero
14.
Int J Dev Biol ; 56(1-3): 83-91, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22252539

RESUMO

The development of a complex multicellular organism requires a careful coordination of growth, cell division, cell differentiation and cell death. All these processes must be under intricate and coordinated control, as they have to be integrated across all tissues. Freshwater planarians are especially plastic, in that they constantly replace somatic tissues from a pool of adult somatic stem cells and continuously undergo growth and degrowth as adult animals in response to nutrient availability. During these processes they appear to maintain perfect scale of tissues and organs. These life history traits make them an ideal model system to study growth and degrowth. We have studied the unique planarian process of degrowth. When food is not available, planarians are able to degrow to a minimum size, without any signs of adverse physiological outcomes. For example they maintain full regenerative capacity. Our current knowledge of how this is regulated at the molecular and cellular level is very limited. Planarian degrowth has been reported to result from a decrease in cell number rather than a decrease in cell size. Thus one obvious explanation for degrowth would be a decrease in stem cell proliferation. However evidence in the literature suggests this is not the case. We show that planarians maintain normal basal mitotic rates during degrowth but that the number of stem cell progeny decreases during starvation and degrowth. These observations are reversed upon feeding, indicating that they are dependent on nutritional status. An increase in cell death is also observed during degrowth, which is not rapidly reversed upon feeding. We conclude that degrowth is a result of cell death decreasing cell numbers and that the dynamics of neoblast self-renewal and differentiation adapt to nutrient conditions to allow maintenance of the neoblast population during the period of starvation.


Assuntos
Proliferação de Células , Mitose/fisiologia , Planárias/citologia , Planárias/fisiologia , Regeneração/fisiologia , Inanição , Células-Tronco/fisiologia , Animais , Western Blotting , Morte Celular , Diferenciação Celular , Técnicas Imunoenzimáticas , Hibridização In Situ , Modelos Biológicos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Células-Tronco/citologia
15.
Int J Dev Biol ; 53(4): 493-505, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19247960

RESUMO

miRNAs are an important class of non-protein coding small RNAs whose specific functions in animals are rapidly being elucidated. It is clear that miRNAs can play crucial roles in stem cell maintenance, cell fate determination and differentiation. We use planarians, which possess a large population of pluripotent somatic stem cells, as a powerful model system to study many aspects of stem cell biology and regeneration. In particular we wish to investigate the regulatory role miRNAs may have in planarian stem cell self renewal, proliferation and differentiation. Here, we characterized the differential spatial patterns of expression of miRNAs in whole and regenerating planarians by in situ hybridization to nascent miRNA transcripts. These miRNA expression patterns are the first which have been determined for a Lophotrocozoan animal. We have characterized the expression patterns of 42 miRNAs in adult planarians, constituting a complete range of tissue specific expression patterns. We also followed miRNA expression during planarian regeneration. The majority of planarian miRNAs were expressed either in areas where stem cells (neoblasts) are located and/or in the nervous system. Some miRNAs were definitively expressed in stem cells and dividing cells as confirmed by in situ hybridisation after irradiation. We also found miRNAs to be expressed in germ stem cells of the sexual strain. Together, these data suggest an important role for miRNAs in stem cell regulation and in neural cell differentiation in planarians.


Assuntos
Regulação da Expressão Gênica/genética , Homeostase/genética , MicroRNAs/genética , Planárias/genética , Regeneração/genética , Envelhecimento/fisiologia , Animais , Forma do Núcleo Celular/genética , Feminino , Masculino , Maturidade Sexual , Células-Tronco/metabolismo , Transcrição Gênica/genética
16.
Curr Pharm Des ; 14(2): 116-25, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18220823

RESUMO

Autophagy is a process in which eukaryotic cells sequester and degrade cytoplasm and organelles via the lysosomal pathway. This process allows turnover of intracellular organelles, participates in the maintenance of cellular homeostasis and prevents accumulation of defective cellular structures. Increased autophagy is normally induced by environmental cues such as starvation and hormones, while excessive levels of autophagy can lead to autophagic programmed cell death (PCD), with features that differ from those of the apoptotic PCD process. Since autophagic PCD plays a key role in development, morphogenesis and regeneration in several animal taxa, identification of evolutionarily conserved components of the autophagic machinery is a basic starting point in order to unravel the role of autophagy under both physiological and pathological conditions. Here we summarize recent findings on the role of autophagy in two different invertebrate taxa, Platyhelminthes and Insects, focusing attention on two complex events occurring in those systems, namely planarian regeneration and insect metamorphosis. Both represent good models in which to investigate the process of autophagy and its relationship with other PCD mechanisms.


Assuntos
Autofagia/fisiologia , Insetos/crescimento & desenvolvimento , Metamorfose Biológica , Planárias/crescimento & desenvolvimento , Animais , Apoptose/genética , Apoptose/fisiologia , Autofagia/genética , Morte Celular , Insetos/citologia , Insetos/genética , Insetos/metabolismo , Planárias/citologia , Planárias/genética , Planárias/metabolismo
17.
Proc Natl Acad Sci U S A ; 104(33): 13373-8, 2007 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-17686979

RESUMO

Remodeling is an integral component of tissue homeostasis and regeneration. In planarians, these processes occur constantly in a simple tractable model organism as part of the animal's normal life history. Here, we have studied the gene Gtdap-1, the planarian ortholog of human death-associated protein-1 or DAP-1. DAP-1, together with DAP-kinase, has been identified as a positive mediator of programmed cell death induced by gamma-IFN in HeLa cells. Although the function of DAP-kinase is well characterized, the role of DAP-1 has not been studied in detail. Our findings suggest that Gtdap-1 is involved in autophagy in planarians, and that autophagy plays an essential role in the remodeling of the organism that occurs during regeneration and starvation, providing the necessary energy and building blocks to the neoblasts for cell proliferation and differentiation. The gene functions at the interface between survival and cell death during stress-inducing processes like regeneration and starvation in sexual and asexual races of planarians. Our findings provide insights into the complex interconnections among cell proliferation, homeostasis, and cell death in planarians and perspectives for the understanding of neoblast stem cell dynamics.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Autofagia/fisiologia , Planárias/fisiologia , Regeneração , Animais , Proteínas Reguladoras de Apoptose/genética , Clonagem Molecular , DNA Complementar , Relação Dose-Resposta à Radiação , Marcação In Situ das Extremidades Cortadas , Dados de Sequência Molecular , Mutação , Planárias/genética , Planárias/efeitos da radiação , Regulação para Cima
18.
Autophagy ; 3(6): 640-2, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17786038

RESUMO

Planarians have been established as an ideal model organism for stem cell research and regeneration. Planarian regeneration and homeostasis require an exquisite balancing act between cell death and cell proliferation as new tissues are made (epimorphosis) and existing tissues remodeled (morphallaxis). Some of the genes and mechanisms that control cell proliferation and pattern formation are known. However, studies about cell death during remodeling are few and far between. We have studied the gene Gtdap-1, the planarian ortholog of human death-associated protein-1 or DAP-1. DAP-1 together with DAP-kinase has been identified as a positive mediator of programmed cell death induced by gamma-interferon in HeLa cells. We have found that the gene functions at the interface between autophagy and cell death in the remodeling of the organism that occurs during regeneration and starvation in sexual and asexual races of planarians. Our data suggest that autophagy of existing cells may be essential to fuel the continued proliferation and differentiation of stem cells by providing the necessary energy and building blocks to neoblasts.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Autofagia/fisiologia , Planárias/fisiologia , Regeneração/fisiologia , Inanição/fisiopatologia , Animais , Proteínas Reguladoras de Apoptose/genética , Genes de Helmintos , Planárias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA