Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Clin Sci (Lond) ; 132(16): 1725-1739, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-29500224

RESUMO

Acute kidney injury (AKI) is considered an inflammatory disease in which toll-like receptors (TLRs) signaling pathways play an important role. The activation of TLRs results in production of several inflammatory cytokines leading to further renal damage. In contrast, TLRs are key players on autophagy induction, which is associated with a protective function on cisplatin-induced AKI. Hence, the present study aimed to evaluate the specific participation of TLR2 and TLR4 molecules on the development of cisplatin-induced AKI. Complementarily, we also investigated the link between TLRs and heme oxygenase-1 (HO-1), a promisor cytoprotective molecule. First, we observed that only the absence of TLR2 but not TLR4 in mice exacerbated the renal dysfunction, tissue injury and mortality rate, even under an immunologically privileged microenvironment. Second, we demonstrated that TLR2 knockout (KO) mice presented lower expression of autophagy-associated markers when compared with TLR4 KO animals. Similar parameter was confirmed in vitro, using tubular epithelial cells derived from both KO mice. To test the cross-talking between HO-1 and TLRs, hemin (an HO-1 internal inducer) was administrated in cisplatin-treated TLR2 and TLR4 KO mice and it was detected an improvement in the global renal tissue parameters. However, this protection was less evident at TLR2 KO mice. In summary, we documented that TLR2 plays a protective role in cisplatin-induced AKI progression, in part, by a mechanism associated with autophagy up-regulation, considering that its interplay with HO-1 can promote renal tissue recover.


Assuntos
Injúria Renal Aguda/genética , Autofagia/genética , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética , Injúria Renal Aguda/metabolismo , Animais , Células Cultivadas , Cisplatino , Citocinas/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Rim/metabolismo , Rim/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo
2.
Inflammopharmacology ; 26(1): 251-260, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29063489

RESUMO

Inflammatory bowel diseases (IBDs) affect millions of people worldwide and their frequencies in developed countries have increased since the twentieth century. In this context, there is an intensive search for therapies that modulate inflammation and provide tissue regeneration in IBDs. Recently, the immunomodulatory activity of adipose tissue-derived mesenchymal stromal cells (ADMSCs) has been demonstrated to play an important role on several immune cells in different conditions of inflammatory and autoimmune diseases. In this study, we explored the immunomodulatory potential of ADMSC in a classical model of DSS-induced colitis. First, we found that treatment of mice with ADMSC ameliorated the severity of DSS-induced colitis, reducing colitis pathological score and preventing colon shortening. Moreover, a prominent reduction of pro-inflammatory cytokines levels (i.e., IFN-γ, TNF-α, IL-6 and MCP-1) was observed in the colon of animals treated with ADMSC. We also observed a significant reduction in the frequencies of macrophages (F4/80+CD11b+) and dendritic cells (CD11c+CD103+) in the intestinal lamina propria of ADMSC-treated mice. Finally, we detected the up-regulation of immunoregulatory-associated molecules in intestine of mice treated with ADMSCs (i.e., elevated arginase-1 and IL-10). Thus, this present study demonstrated that ADMSC modulates the overall gut inflammation (cell activation and recruitment) in experimental colitis, providing support to the further development of new strategies in the treatment of intestinal diseases.


Assuntos
Colite/metabolismo , Colite/patologia , Mediadores da Inflamação/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Colo/metabolismo , Colo/patologia , Citocinas/metabolismo , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Modelos Animais de Doenças , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
Mediators Inflamm ; 2014: 291024, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25132730

RESUMO

Macrophages play a special role in the onset of several diseases, including acute and chronic kidney injuries. In this sense, tubule interstitial nephritis (TIN) represents an underestimated insult, which can be triggered by different stimuli and, in the absence of a proper regulation, can lead to fibrosis deposition. Based on this perception, we evaluated the participation of macrophage recruitment in the development of TIN. Initially, we provided adenine-enriched food to WT and searched for macrophage presence and action in the kidney. Also, a group of animals were depleted of macrophages with the clodronate liposome while receiving adenine-enriched diet. We collected blood and renal tissue from these animals and renal function, inflammation, and fibrosis were evaluated. We observed higher expression of chemokines in the kidneys of adenine-fed mice and a substantial protection when macrophages were depleted. Then, we specifically investigated the role of some key chemokines, CCR5 and CCL3, in this TIN experimental model. Interestingly, CCR5 KO and CCL3 KO animals showed less renal dysfunction and a decreased proinflammatory profile. Furthermore, in those animals, there was less profibrotic signaling. In conclusion, we can suggest that macrophage infiltration is important for the onset of renal injury in the adenine-induced TIN.


Assuntos
Injúria Renal Aguda/metabolismo , Adenina/toxicidade , Quimiocina CCL3/metabolismo , Rim/metabolismo , Macrófagos/metabolismo , Receptores CCR5/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/genética , Animais , Quimiocina CCL3/genética , Citometria de Fluxo , Rim/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Knockout , Nefrite Intersticial/metabolismo , Receptores CCR5/genética
4.
Front Immunol ; 11: 578623, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33414781

RESUMO

Increasing evidence shows the essential participation of gut microbiota in human health and diseases by shaping local and systemic immunity. Despite an accumulating body of studies showing that chronic kidney disease (CKD) is closely associated with disturbances in the composition of gut microbiota, it remains unclear the importance of gut microbiota in the onset and development of CKD. For the purpose of untangling the role of gut microbiota in CKD, gut microbiota was depleted with a pool of broad-spectrum antibiotics in mice submitted to unilateral ureteral obstruction (UUO). Depletion of gut microbiota significantly decreased levels of proinflammatory cytokines and fibrosis markers, attenuating renal injury. Additionally, to study whether the pathogenic role of gut microbiota is dependent of microbial-host crosstalk, we generated mice lacking Myd88 (myeloid differentiation primary response gene 8) expression in intestinal epithelial cells (IECs) and performed UUO. The absence of Myd88 in IECs prevented a bacterial burden in mesenteric lymph nodes as observed in WT mice after UUO and led to lower expression of proinflammatory cytokines and chemokines, reducing deposition of type I collagen and, ultimately, attenuating renal damage. Therefore, our results suggest that the presence of gut microbiota is crucial for the development of CKD and may be dependent of Myd88 signaling in IECs, which appears to be essential to maturation of immune cells intimately involved in aggravation of inflammatory scenarios.


Assuntos
Células Epiteliais/metabolismo , Microbioma Gastrointestinal , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Rim/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Insuficiência Renal Crônica/etiologia , Obstrução Ureteral/complicações , Animais , Antibacterianos/farmacologia , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Disbiose , Fibrose , Microbioma Gastrointestinal/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/microbiologia , Insuficiência Renal Crônica/patologia , Transdução de Sinais
5.
Clin Transl Immunology ; 5(6): e86, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27757226

RESUMO

Recent findings regarding the influence of the microbiota in many inflammatory processes have provided a new way to treat diseases. Now, one may hypothesize that the origin of a plethora of diseases is related to the health of the gut microbiota and its delicate, although complex, interface with the epithelial and immune systems. The 'westernization' of diets, for example, is associated with alterations in the gut microbiota. Such alterations have been found to correlate directly with the increased incidence of diabetes and hypertension, the main causes of chronic kidney diseases (CKDs), which, in turn, have a high estimated prevalence. Indeed, data have arisen showing that the progression of kidney diseases is strictly related to the composition of the microbiota. Alterations in the gut microbiota diversity during CKDs do not only have the potential to exacerbate renal injury but may also contribute to the development of associated comorbidities, such as cardiovascular diseases and insulin resistance. In this review, we discuss how dysbiosis through alterations in the gut barrier and the consequent activation of immune system could intensify the progression of CKD and vice versa, how CKDs can modify the gut microbiota diversity and abundance.

6.
Front Immunol ; 7: 645, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28096802

RESUMO

Mesenchymal stromal cells (MSCs) orchestrate tissue repair by releasing cell-derived microvesicles (MVs), which, presumably by small RNA species, modulate global gene expression. The knowledge of miRNA/mRNA signatures linked to a reparative status may elucidate some of the molecular events associated with MSC protection. Here, we used a model of cisplatin-induced kidney injury (acute kidney injury) to assess how MSCs or MVs could restore tissue function. MSCs and MVs presented similar protective effects, which were evidenced in vivo and in vitro by modulating apoptosis, inflammation, oxidative stress, and a set of prosurvival molecules. In addition, we observed that miRNAs (i.e., miR-880, miR-141, miR-377, and miR-21) were modulated, thereby showing active participation on regenerative process. Subsequently, we identified that MSC regulates a particular miRNA subset which mRNA targets are associated with Wnt/TGF-ß, fibrosis, and epithelial-mesenchymal transition signaling pathways. Our results suggest that MSCs release MVs that transcriptionally reprogram injured cells, thereby modulating a specific miRNA-mRNA network.

7.
World J Nephrol ; 3(3): 50-63, 2014 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-25332896

RESUMO

Obesity is an important worldwide challenge that must be faced in most developed and developing countries because of unhealthy nutritional habits. The consequences of obesity and being overweight are observed in different organs, but the kidney is one of the most affected. Excess adipose tissue causes hemodynamic alterations in the kidney that can result in renal disease. However, obesity is also commonly associated with other comorbidities such as chronic inflammation, hypertension and diabetes. This association of several aggravating factors is still a matter of concern in clinical and basic research because the pathophysiologic mechanisms surrounding chronic kidney disease development in obese patients remain unclear. This review will discuss the consequences of obesity in the context of renal injury.

8.
Dis Model Mech ; 7(6): 701-10, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24742784

RESUMO

Focal and segmental glomerulosclerosis (FSGS) is one of the most important renal diseases related to end-stage renal failure. Bradykinin has been implicated in the pathogenesis of renal inflammation, whereas the role of its receptor 2 (B2RBK; also known as BDKRB2) in FSGS has not been studied. FSGS was induced in wild-type and B2RBK-knockout mice by a single intravenous injection of Adriamycin (ADM). In order to further modulate the kinin receptors, the animals were also treated with the B2RBK antagonist HOE-140 and the B1RBK antagonist DALBK. Here, we show that the blockage of B2RBK with HOE-140 protects mice from the development of FSGS, including podocyte foot process effacement and the re-establishment of slit-diaphragm-related proteins. However, B2RBK-knockout mice were not protected from FSGS. These opposite results were due to B1RBK expression. B1RBK was upregulated after the injection of ADM and this upregulation was exacerbated in B2RBK-knockout animals. Furthermore, treatment with HOE-140 downregulated the B1RBK receptor. The blockage of B1RBK in B2RBK-knockout animals promoted FSGS regression, with a less-inflammatory phenotype. These results indicate a deleterious role of both kinin receptors in an FSGS model and suggest a possible cross-talk between them in the progression of disease.


Assuntos
Glomerulosclerose Segmentar e Focal/patologia , Receptores da Bradicinina/fisiologia , Animais , Bradicinina/análogos & derivados , Bradicinina/farmacologia , Glomerulosclerose Segmentar e Focal/metabolismo , Camundongos , Camundongos Knockout , Receptores da Bradicinina/efeitos dos fármacos , Receptores da Bradicinina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA