Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Virol ; 97(11): e0091023, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37921471

RESUMO

IMPORTANCE: The main limitation of oncolytic vectors is neutralization by blood components, which prevents intratumoral administration to patients. Enadenotucirev, a chimeric HAdV-11p/HAdV-3 adenovirus identified by bio-selection, is a low seroprevalence vector active against a broad range of human carcinoma cell lines. At this stage, there's still some uncertainty about tropism and primary receptor utilization by HAdV-11. However, this information is very important, as it has a direct influence on the effectiveness of HAdV-11-based vectors. The aim of this work is to determine which of the two receptors, DSG2 and CD46, is involved in the attachment of the virus to the host, and what role they play in the early stages of infection.


Assuntos
Adenovírus Humanos , Desmogleína 2 , Proteína Cofatora de Membrana , Receptores Virais , Humanos , Adenovírus Humanos/genética , Adenovírus Humanos/metabolismo , Linhagem Celular , Desmogleína 2/genética , Desmogleína 2/metabolismo , Proteína Cofatora de Membrana/genética , Proteína Cofatora de Membrana/metabolismo , Receptores Virais/genética , Receptores Virais/metabolismo
2.
Mol Ther ; 30(5): 1913-1925, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35151843

RESUMO

Virus-like particles (VLPs) are highly suited platforms for protein-based vaccines. In the present work, we adapted a previously designed non-infectious adenovirus-inspired 60-mer dodecahedric VLP (ADDomer) to display a multimeric array of large antigens through a SpyTag/SpyCatcher system. To validate the platform as a potential COVID-19 vaccine approach, we decorated the newly designed VLP with the glycosylated receptor binding domain (RBD) of SARS-CoV-2. Cryoelectron microscopy structure revealed that up to 60 copies of this antigenic domain could be bound on a single ADDomer particle, with the symmetrical arrangements of a dodecahedron. Mouse immunization with the RBD decorated VLPs already showed a significant specific humoral response following prime vaccination, greatly reinforced by a single boost. Neutralization assays with SARS-CoV-2 spike pseudo-typed virus demonstrated the elicitation of strong neutralization titers, superior to those of COVID-19 convalescent patients. Notably, the presence of pre-existing immunity against the adenoviral-derived particles did not hamper the immune response against the antigen displayed on its surface. This plug and play vaccine platform represents a promising new highly versatile tool to combat emergent pathogens.


Assuntos
COVID-19 , SARS-CoV-2 , Adenoviridae/genética , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Microscopia Crioeletrônica , Humanos , Camundongos , Vacinação
3.
J Virol ; 91(6)2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28077642

RESUMO

Defensins are small antimicrobial peptides capable of neutralizing human adenovirus (HAdV) in vitro by binding capsid proteins and blocking endosomal escape of virus. In humans, the alpha defensin HD5 is produced by specialized epithelial cells of the gastrointestinal and genito-urinary tracts. Here, we demonstrate, using patient biopsy specimens, that HD5 is also expressed as an active, secreted peptide by epithelial ovarian and lung cancer cells in situ This finding prompted us to study the role of HD5 in infection and spread of replication-competent, oncolytic HAdV type 3 (HAdV3). HAdV3 produces large amounts of penton-dodecahedra (PtDd), virus-like particles, during replication. We have previously shown that PtDd are involved in opening epithelial junctions, thus facilitating lateral spread of de novo-produced virions. Here, we describe a second function of PtDd, namely, the blocking of HD5. A central tool to prove that viral PtDd neutralize HD5 and support spread of progeny virus was an HAdV3 mutant virus in which formation of PtDd was disabled (mut-Ad3GFP, where GFP is green fluorescent protein). We demonstrated that viral spread of mut-Ad3GFP was blocked by synthetic HD5 whereas that of the wild-type (wt) form (wt-Ad3GFP) was only minimally impacted. In human colon cancer Caco-2 cells, induction of cellular HD5 expression by fibroblast growth factor 9 (FGF9) significantly inhibited viral spread and progeny virus production of mut-Ad3GFP but not of wt-Ad3GFP. Finally, the ectopic expression of HD5 in tumor cells diminished the in vivo oncolytic activity of mut-Ad3GFP but not of wt-Ad3GFP. These data suggest a new mechanism of HAdV3 to overcome innate antiviral host responses. Our study has implications for oncolytic adenovirus therapy.IMPORTANCE Previously, it has been reported that human defensin HD5 inactivates specific human adenoviruses by binding to capsid proteins and blocking endosomal escape of virus. The central new findings described in our manuscript are the following: (i) the discovery of a new mechanism used by human adenovirus serotype 3 to overcome innate antiviral host responses that is based on the capacity of HAdV3 to produce subviral penton-dodecahedral particles that act as decoys for HD5, thus preventing the inactivation of virus progeny produced upon replication; (ii) the demonstration that ectopic HD5 expression in cancer cells decreases the oncolytic efficacy of a serotype 5-based adenovirus vector; and (iii) the demonstration that epithelial ovarian and lung cancers express HD5. The study improves our understanding of how adenoviruses establish infection in epithelial tissues and has implications for cancer therapy with oncolytic adenoviruses.


Assuntos
Adenovírus Humanos/imunologia , Células Epiteliais/imunologia , Células Epiteliais/virologia , Evasão da Resposta Imune , Terapia Viral Oncolítica , Vírus Oncolíticos/imunologia , alfa-Defensinas/metabolismo , Biópsia , Células CACO-2 , Feminino , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Ovarianas/patologia
4.
Virol J ; 14(1): 161, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28830495

RESUMO

BACKGROUND: The existing literature about HCV association with, and replication in mosquitoes is extremely poor. To fill this gap, we performed cellular investigations aimed at exploring (i) the capacity of HCV E1E2 glycoproteins to bind on Aedes mosquito cells and (ii) the ability of HCV serum particles (HCVsp) to replicate in these cell lines. METHODS: First, we used purified E1E2 expressing baculovirus-derived HCV pseudo particles (bacHCVpp) so we could investigate their association with mosquito cell lines from Aedes aegypti (Aag-2) and Aedes albopictus (C6/36). We initiated a series of infections of both mosquito cells (Ae aegypti and Ae albopictus) with the HCVsp (Lat strain - genotype 3) and we observed the evolution dynamics of viral populations within cells over the course of infection via next-generation sequencing (NGS) experiments. RESULTS: Our binding assays revealed bacHCVpp an association with the mosquito cells, at comparable levels obtained with human hepatocytes (HepaRG cells) used as a control. In our infection experiments, the HCV RNA (+) were detectable by RT-PCR in the cells between 21 and 28 days post-infection (p.i.). In human hepatocytes HepaRG and Ae aegypti insect cells, NGS experiments revealed an increase of global viral diversity with a selection for a quasi-species, suggesting a structuration of the population with elimination of deleterious mutations. The evolutionary pattern in Ae albopictus insect cells is different (stability of viral diversity and polymorphism). CONCLUSIONS: These results demonstrate for the first time that natural HCV could really replicate within Aedes mosquitoes, a discovery which may have major consequences for public health as well as in vaccine development.


Assuntos
Aedes/virologia , Hepacivirus/genética , Insetos Vetores/virologia , Replicação Viral/fisiologia , Animais , Linhagem Celular , Genótipo , Hepacivirus/isolamento & purificação , Hepatite C/sangue , Hepatócitos/virologia , Humanos , Mutação , Peptídeos/metabolismo , Filogenia , Reação em Cadeia da Polimerase/métodos , Polimorfismo Genético , RNA Viral , Análise de Sequência , Proteínas do Envelope Viral/metabolismo
5.
J Biol Chem ; 290(29): 17923-17934, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26045555

RESUMO

Vaccinia virus polymerase holoenzyme is composed of the DNA polymerase catalytic subunit E9 associated with its heterodimeric co-factor A20·D4 required for processive genome synthesis. Although A20 has no known enzymatic activity, D4 is an active uracil-DNA glycosylase (UNG). The presence of a repair enzyme as a component of the viral replication machinery suggests that, for poxviruses, DNA synthesis and base excision repair is coupled. We present the 2.7 Å crystal structure of the complex formed by D4 and the first 50 amino acids of A20 (D4·A201-50) bound to a 10-mer DNA duplex containing an abasic site resulting from the cleavage of a uracil base. Comparison of the viral complex with its human counterpart revealed major divergences in the contacts between protein and DNA and in the enzyme orientation on the DNA. However, the conformation of the dsDNA within both structures is very similar, suggesting a dominant role of the DNA conformation for UNG function. In contrast to human UNG, D4 appears rigid, and we do not observe a conformational change upon DNA binding. We also studied the interaction of D4·A201-50 with different DNA oligomers by surface plasmon resonance. D4 binds weakly to nonspecific DNA and to uracil-containing substrates but binds abasic sites with a Kd of <1.4 µm. This second DNA complex structure of a family I UNG gives new insight into the role of D4 as a co-factor of vaccinia virus DNA polymerase and allows a better understanding of the structural determinants required for UNG action.


Assuntos
DNA/metabolismo , Uracila-DNA Glicosidase/química , Vaccinia virus/enzimologia , Sequência de Aminoácidos , Cristalografia por Raios X , DNA/química , Humanos , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Conformação Proteica , Alinhamento de Sequência , Uracila-DNA Glicosidase/metabolismo , Vacínia/virologia , Vaccinia virus/química , Vaccinia virus/metabolismo
6.
J Virol ; 89(21): 10841-59, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26292319

RESUMO

UNLABELLED: We recently discovered that desmoglein 2 (DSG2) is a receptor for human adenovirus species B serotypes Ad3, Ad7, Ad11, and Ad14. Ad3 is considered to be a widely distributed human pathogen. Ad3 binding to DSG2 triggers the transient opening of epithelial junctions. Here, we further delineate the mechanism that leads to DSG2-mediated epithelial junction opening in cells exposed to Ad3 and recombinant Ad3 fiber proteins. We identified an Ad3 fiber knob-dependent pathway that involves the phosphorylation of mitogen-activated protein (MAP) kinases triggering the activation of the matrix-metalloproteinase ADAM17. ADAM17, in turn, cleaves the extracellular domain of DSG2 that links epithelial cells together. The shed DSG2 domain can be detected in cell culture supernatant and also in serum of mice with established human xenograft tumors. We then extended our studies to Ad14 and Ad14P1. Ad14 is an important research and clinical object because of the recent appearance of a new, more pathogenic strain (Ad14P1). In a human epithelial cancer xenograft model, Ad14P1 showed more efficient viral spread and oncolysis than Ad14. Here, we tested the hypothesis that a mutation in the Ad14P1 fiber knob could account for the differences between the two strains. While our X-ray crystallography studies suggested an altered three-dimensional (3D) structure of the Ad14P1 fiber knob in the F-G loop region, this did not significantly change the fiber knob affinity to DSG2 or the intracellular signaling and DSG2 shedding in epithelial cancer cells. IMPORTANCE: A number of widely distributed adenoviruses use the epithelial junction protein DSG2 as a receptor for infection and lateral spread. Interaction with DSG2 allows the virus not only to enter cells but also to open epithelial junctions which form a physical barrier to virus spread. Our study elucidates the mechanism beyond virus-triggered junction opening with a focus on adenovirus serotype 3. Ad3 binds to DSG2 with its fiber knob domain and triggers intracellular signaling that culminates in the cleavage of the extracellular domain of DSG2, thereby disrupting DSG2 homodimers between epithelial cells. We confirmed this pathway with a second DSG2-interacting serotype, Ad14, and its recently emerged strain Ad14P1. These new insights in basic adenovirus biology can be employed to develop novel drugs to treat adenovirus infection as well as be used as tools for gene delivery into epithelial tissues or epithelial tumors.


Assuntos
Adenovírus Humanos/genética , Adenovírus Humanos/metabolismo , Desmogleína 2/metabolismo , Modelos Moleculares , Proteínas ADAM/metabolismo , Proteína ADAM17 , Adenovírus Humanos/química , Análise de Variância , Animais , Western Blotting , Cristalografia por Raios X , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células HEK293 , Células HeLa , Humanos , Camundongos , Fosforilação , Sorogrupo , Especificidade da Espécie , Ressonância de Plasmônio de Superfície , Espectrometria de Massas em Tandem
7.
Mol Imaging ; 142015.
Artigo em Inglês | MEDLINE | ID: mdl-26105563

RESUMO

Our goal was to identify suitable image quantification methods to image 5-hydroxytryptamine2A (5-HT2A) receptors in vivo in Mdr1a knockout (KO) rats (i.e., P-glycoprotein KO) using 123I-R91150 single-photon emission computed tomography (SPECT). The 123I-R91150 binding parameters estimated with different reference tissue models (simplified reference tissue model [SRTM], Logan reference tissue model, and tissue ratio [TR] method) were compared to the estimates obtained with a comprehensive three-tissue/seven-parameter (3T/7k)-based model. The SRTM and Logan reference tissue model estimates of 5-HT2A receptor (5-HT2AR) nondisplaceable binding potential (BPND) correlated well with the absolute receptor density measured with the 3T/7k gold standard (r > .89). Quantification of 5-HT2AR using the Logan reference tissue model required at least 90 minutes of scanning, whereas the SRTM required at least 110 minutes. The TR method estimates were also highly correlated to the 5-HT2AR density (r > .91) and only required a single 20-minute scan between 100 and 120 minutes postinjection. However, a systematic overestimation of the BPND values was observed. The Logan reference tissue method is more convenient than the SRTM for the quantification of 5-HT2AR in Mdr1a KO rats using 123I-R91150 SPECT. The TR method is an interesting and simple alternative, despite its bias, as it still provides a valid index of 5-HT2AR density.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Encéfalo/diagnóstico por imagem , Radioisótopos do Iodo/metabolismo , Receptor 5-HT2A de Serotonina/metabolismo , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Animais , Encéfalo/metabolismo , Masculino , Metaboloma , Piperidinas , Ratos Sprague-Dawley
8.
PLoS Pathog ; 9(10): e1003718, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24204268

RESUMO

Human adenovirus serotypes Ad3, Ad7, Ad11, and Ad14 use the epithelial junction protein desmoglein 2 (DSG2) as a receptor for infection. During Ad infection, the fiber and penton base capsid proteins are produced in vast excess and form hetero-oligomers, called pentons. It has been shown for Ad3 that pentons self-assemble into penton-dodecahedra (PtDd). Our previous studies with recombinant purified Ad3 PtDd (produced in insect cells) showed that PtDd bind to DSG2 and trigger intracellular signaling resulting in the transient opening of junctions between epithelial cells. So far, a definitive proof for a function of Ad3 PtDd in the viral life cycle is elusive. Based on the recently published 3D structure of recombinant Ad3 PtDd, we generated a penton base mutant Ad3 vector (mu-Ad3GFP). mu-Ad3GFP is identical to its wild-type counterpart (wt-Ad3GFP) in the efficiency of progeny virus production; however, it is disabled in the production of PtDd. For infection studies we used polarized epithelial cancer cells or cell spheroids. We showed that in wt-Ad3GFP infected cultures, PtDd were released from cells before viral cytolysis and triggered the restructuring of epithelial junctions. This in turn facilitated lateral viral spread of de novo produced virions. These events were nearly absent in mu-Ad3GFP infected cultures. Our in vitro findings were consolidated in mice carrying xenograft tumors derived from human epithelial cancer cells. Furthermore, we provide first evidence that PtDd are also formed by another DSG2-interacting Ad serotype, the newly emerged, highly pathogenic Ad14 strain (Ad14p1). The central finding of this study is that a subgroup of Ads has evolved to generate PtDd as a strategy to achieve penetration into and dissemination in epithelial tissues. Our findings are relevant for basic and applied virology, specifically for cancer virotherapy.


Assuntos
Infecções por Adenovirus Humanos/transmissão , Adenovírus Humanos/metabolismo , Células Epiteliais/virologia , Junções Intercelulares/virologia , Vírion/metabolismo , Infecções por Adenovirus Humanos/genética , Infecções por Adenovirus Humanos/metabolismo , Adenovírus Humanos/genética , Animais , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células HeLa , Humanos , Junções Intercelulares/metabolismo , Junções Intercelulares/patologia , Camundongos , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia , Terapia Viral Oncolítica/métodos
9.
J Virol ; 87(21): 11346-62, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23946456

RESUMO

Human adenovirus (Ad) serotypes Ad3, Ad7, Ad11, and Ad14, as well as a recently emerged strain of Ad14 (Ad14p1), use the epithelial junction protein desmoglein 2 (DSG2) as a receptor for infection. Unlike Ad interaction with CAR and CD46, structural details for Ad binding to DSG2 are still elusive. Using an approach based on Escherichia coli expression libraries of random Ad3 and Ad14p1 fiber knob mutants, we identified amino acid residues that, when mutated individually, ablated or reduced Ad knob binding to DSG2. These residues formed three clusters inside one groove at the extreme distal end of the fiber knob. The Ad3 fiber knob mutant library was also used to identify variants with increased affinity to DSG2. We found a number of mutations within or near the EF loop of the Ad3 knob that resulted in affinities to DSG2 that were several orders of magnitude higher than those to the wild-type Ad3 knob. Crystal structure analysis of one of the mutants showed that the introduced mutations make the EF loop more flexible, which might facilitate the interaction with DSG2. Our findings have practical relevance for cancer therapy. We have recently reported that an Ad3 fiber knob-containing recombinant protein (JO-1) is able to trigger opening of junctions between epithelial cancer cells which, in turn, greatly improved the intratumoral penetration and efficacy of therapeutic agents (I. Beyer, et al., Clin. Cancer Res. 18:3340-3351, 2012; I. Beyer, et al., Cancer Res. 71:7080-7090, 2011). Here, we show that affinity-enhanced versions of JO-1 are therapeutically more potent than the parental protein in a series of cancer models.


Assuntos
Adenovírus Humanos/fisiologia , Proteínas do Capsídeo/metabolismo , Desmogleína 2/metabolismo , Interações Hospedeiro-Patógeno , Mapeamento de Interação de Proteínas , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Linhagem Celular , Cristalografia por Raios X , Análise Mutacional de DNA , Humanos , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Receptores Virais/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
10.
J Virol ; 86(9): 5380-5, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22345476

RESUMO

During human adenovirus type 3 (Ad3) infection, an excess of penton base and fiber proteins are produced which form dodecahedral particles composed of 12 pentamers of penton base and 12 trimers of fiber protein. No biological functions have yet been ascribed to Ad3 dodecahedra. Here, we show that dodecahedra compete with Ad3 virions for binding to the cell surface and trigger cell remodeling, giving new insights into possible biological functions of dodecahedra in the Ad3 infectious cycle.


Assuntos
Adenovírus Humanos/fisiologia , Proteínas do Capsídeo/metabolismo , Interações Hospedeiro-Patógeno , Linhagem Celular , Membrana Celular/metabolismo , Desmogleína 2/metabolismo , Humanos , Ligação Proteica , Ligação Viral
11.
J Virol ; 86(11): 6286-302, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22457526

RESUMO

We have recently reported that a group of human adenoviruses (HAdVs) uses desmoglein 2 (DSG2) as a receptor for infection. Among these are the widely distributed serotypes HAdV-B3 and HAdV-B7, as well as a newly emerged strain derived from HAdV-B14. These serotypes do not infect rodent cells and could not up until now be studied in small-animal models. We therefore generated transgenic mice containing the human DSG2 locus. These mice expressed human DSG2 (hDSG2) at a level and in a pattern similar to those found for humans and nonhuman primates. As an initial application of hDSG2-transgenic mice, we used a green fluorescent protein (GFP)-expressing HAdV-B3 vector (Ad3-GFP) and studied GFP transgene expression by quantitative reverse transcription-PCR (qRT-PCR) and immunohistochemistry subsequent to intranasal and intravenous virus application. After intranasal application, we found efficient transduction of bronchial and alveolar epithelial cells in hDSG2-transgenic mice. Intravenous Ad3-GFP injection into hDSG2-transgenic mice resulted in hDSG2-dependent transduction of epithelial cells in the intestinal and colon mucosa. Our findings give an explanation for clinical symptoms associated with infection by DSG2-interacting HAdVs and provide a rationale for using Ad3-derived vectors in gene therapy.


Assuntos
Infecções por Adenovirus Humanos/patologia , Adenovírus Humanos/patogenicidade , Desmogleína 2/genética , Modelos Animais de Doenças , Receptores Virais/genética , Tropismo Viral , Infecções por Adenovirus Humanos/virologia , Animais , Genes Reporter , Proteínas de Fluorescência Verde/genética , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Coloração e Rotulagem/métodos , Transdução Genética
12.
Mol Ther Methods Clin Dev ; 28: 76-89, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36620074

RESUMO

Virus-like particles (VLPs) are versatile protein-based platforms that can be used as a vaccine platform mainly in infectiology. In the present work, we compared a previously designed, non-infectious, adenovirus-inspired 60-mer dodecahedric VLP to display short epitopes or a large tumor model antigen. To validate these two kinds of platforms as a potential immuno-stimulating approach, we evaluated their ability to control melanoma B16-ovalbumin (OVA) growth in mice. A set of adjuvants was screened, showing that polyinosinic-polycytidylic acid (poly(I:C)) was well suited to generate a homogeneous cellular and humoral response against the desired epitopes. In a prophylactic setting, vaccination with the VLP displaying these epitopes resulted in total inhibition of tumor growth 1 month after vaccination. A therapeutic vaccination strategy showed a delay in grafted tumor growth or its total rejection. If the "simple" epitope display on the VLP is sufficient to prevent tumor growth, then an improved engineered platform enabling display of a large antigen is a tool to overcome the barrier of immune allele restriction, broadening the immune response, and paving the way for its potential utilization in humans as an off-the-shelf vaccine.

13.
J Virol ; 85(13): 6390-402, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21525338

RESUMO

Recently, we identified desmoglein 2 (DSG2) as the main receptor for a group of species B adenoviruses (Ads), including Ad3, a serotype that is widely distributed in the human population (H. Wang et al., Nat. Med. 17:96-104, 2011). In this study, we have attempted to delineate structural details of the Ad3 interaction with DSG2. For CAR- and CD46-interacting Ad serotypes, attachment to cells can be completely blocked by an excess of recombinant fiber knob protein, while soluble Ad3 fiber knob only inefficiently blocks Ad3 infection. We found that the DSG2-interacting domain(s) within Ad3 is formed by several fiber knob domains that have to be in the spatial constellation that is present in viral particles. Based on this finding, we generated a small recombinant, self-dimerizing protein containing the Ad3 fiber knob (Ad3-K/S/Kn). Ad3-K/S/Kn bound to DSG2 with high affinity and blocked Ad3 infection. We demonstrated by confocal immunofluorescence and transmission electron microscopy analyses that Ad3-K/S/Kn, through its binding to DSG2, triggered the transient opening of intercellular junctions in epithelial cells. The pretreatment of epithelial cells with Ad3-K/S/Kn resulted in increased access to receptors that are localized in or masked by epithelial junctions, e.g., CAR or Her2/neu. Ad3-K/S/Kn treatment released CAR from tight junctions and thus increased the transduction of epithelial cells by a serotype Ad5-based vector. Furthermore, the pretreatment of Her2/neu-positive breast cancer cells with Ad3-K/S/Kn increased the killing of cancer cells by the Her2/neu-targeting monoclonal antibody trastuzumab (Herceptin). This study widens our understanding of how Ads achieve high avidity to their receptors and the infection of epithelial tissue. The small recombinant protein Ad3-K/S/Kn has practical implications for the therapy of epithelial cancer and gene/drug delivery to normal epithelial tissues.


Assuntos
Adenovírus Humanos/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Desmogleína 2/metabolismo , Multimerização Proteica , Estrutura Terciária de Proteína/fisiologia , Receptores Virais/metabolismo , Adenovírus Humanos/genética , Adenovírus Humanos/patogenicidade , Proteínas do Capsídeo/genética , Linhagem Celular , Células Epiteliais , Células HeLa , Humanos , Junções Intercelulares , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução Genética
14.
Intervirology ; 55(5): 349-55, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22057164

RESUMO

OBJECTIVE: In order to gain further insight into the function of the enteric adenovirus short fiber (SF), we have constructed a recombinant dodecahedron containing the SF protein of HAdV-41 and the HAdV-3 penton base. METHODS: Recombinant baculoviruses expressing the HAdV-41 SF protein and HAdV-3 penton base were cloned and amplified in Sf9 insect cells. Recombinant dodecahedra were expressed by coinfection of High Five™ cells with both baculoviruses, 72 h post-infection. Cell lysate was centrifuged on sucrose density gradient and the purified recombinant dodecahedra were recovered. RESULTS: Analysis by negative staining electron microscopy demonstrated that chimeric dodecahedra made of the HAdV-3 penton base and decorated with the HAdV-41 SF were successfully generated. Next, recombinant dodecahedra were digested with pepsin and analyzed by Western blot. A 'site-specific' proteolysis of the HAdV-41 SF was observed, while the HAdV-3 penton base core was completely digested. CONCLUSION: These results show that, in vitro, the HAdV-41 SF likely undergoes proteolysis in the gastrointestinal tract, its natural environment, which may facilitate the recognition of receptors in intestinal cells. The results obtained in the present study may be the basis for the development of gene therapy vectors towards the intestinal epithelium, as well as orally administered vaccine vectors, but also for the HAdV-41 SF partner identification.


Assuntos
Adenovírus Humanos/genética , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/ultraestrutura , Substâncias Macromoleculares/ultraestrutura , Virossomos/genética , Virossomos/ultraestrutura , Animais , Baculoviridae/genética , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Clonagem Molecular , Vetores Genéticos , Insetos , Substâncias Macromoleculares/metabolismo , Microscopia Eletrônica , Pepsina A , Multimerização Proteica , Proteólise , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Virossomos/metabolismo
15.
Biomedicines ; 10(11)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36359404

RESUMO

Virus-like particles constitute versatile vectors that can be used as vaccine platforms in many fields from infectiology and more recently to oncology. We previously designed non-infectious adenovirus-inspired 60-mer dodecahedric virus-like particles named ADDomers displaying on their surface either a short epitope or a large tumor/viral antigen. In this work, we explored for the first time the immunogenicity of ADDomers exhibiting melanoma-derived tumor antigen/epitope and their impact on the features of human dendritic cell (DC) subsets. We first demonstrated that ADDomers displaying tumor epitope/antigen elicit a strong immune-stimulating potential of human DC subsets (cDC2s, cDC1s, pDCs), which were able to internalize and cross-present tumor antigen, and subsequently cross-prime antigen-specific T-cell responses. To further limit off-target effects and enhance DC targeting, we engineered specific motifs to de-target epithelial cells and improve DCs' addressing. The improved engineered platform making it possible to display large antigen represents a tool to overcome the barrier of immune allele restriction, broadening the immune response, and paving the way to its potential utilization in humans as an off-the-shelf vaccine.

16.
Sci Rep ; 12(1): 7753, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35562182

RESUMO

Our goal is to overcome treatment resistance in ovarian cancer patients which occurs in most cases after an initial positive response to chemotherapy. A central resistance mechanism is the maintenance of desmoglein-2 (DSG2) positive tight junctions between malignant cells that prevents drug penetration into the tumor. We have generated JO4, a recombinant protein that binds to DSG2 resulting in the transient opening of junctions in epithelial tumors. Here we present studies toward the clinical translation of c-JO4 in combination with PEGylated liposomal doxorubicin/Doxil for ovarian cancer therapy. A manufacturing process for cGMP compliant production of JO4 was developed resulting in c-JO4. GLP toxicology studies using material from this process in DSG2 transgenic mice and cynomolgus macaques showed no treatment-related toxicities after intravenous injection at doses reaching 24 mg/kg. Multiple cycles of intravenous c-JO4 plus Doxil (four cycles, 4 weeks apart, simulating the treatment regimen in the clinical trial) elicited antibodies against c-JO4 that increased with each cycle and were accompanied by elevation of pro-inflammatory cytokines IL-6 and TNFα. Pretreatment with steroids and cyclophosphamide reduced anti-c-JO4 antibody response and blunted cytokine release. Our data indicate acceptable safety of our new treatment approach if immune reactions are monitored and counteracted with appropriate immune suppression.


Assuntos
Neoplasias Ovarianas , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Ciclofosfamida/uso terapêutico , Doxorrubicina , Feminino , Humanos , Camundongos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Proteínas Recombinantes/uso terapêutico , Tecnologia , Junções Íntimas/patologia
17.
Mol Cancer ; 10: 105, 2011 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-21884581

RESUMO

Tumor cells can escape the immune system by overexpressing molecules of the B7 family, e.g. B7-H1 (PD-L1 or CD86), which suppresses the anti-tumor T-cell responses through binding to the PD-1 receptor, and similarly for B7.1 (CD80), through binding to CTLA-4. Moreover, direct interactions between B7-H1 and B7.1 molecules are also likely to participate in the immunoevasion mechanism. In this study, we used a mouse model of tumor dormancy, DA1-3b leukemia cells. We previously showed that a minor population of DA1-3b cells persists in equilibrium with the immune system for long periods of time, and that the levels of surface expression of B7-H1 and B7.1 molecules correlates with the dormancy time. We found that leukemia cells DA1-3b/d365 cells, which derived from long-term dormant tumors and overexpressed B7-H1 and B7.1 molecules, were highly permissive to Ad5FB4, a human adenovirus serotype 5 (Ad5) vector pseudotyped with chimeric human-bovine fibers. Both B7-H1 and B7.1 were required for Ad5FB4-cell binding and entry, since (i) siRNA silencing of one or the other B7 gene transcript resulted in a net decrease in the cell binding and Ad5FB4-mediated transduction of DA1-3b/d365; and (ii) plasmid-directed expression of B7.1 and B7-H1 proteins conferred to Ad5FB4-refractory human cells a full permissiveness to this vector. Binding data and flow cytometry analysis suggested that B7.1 and B7-H1 molecules played different roles in Ad5FB4-mediated transduction of DA1-3b/d365, with B7.1 involved in cell attachment of Ad5FB4, and B7-H1 in Ad5FB4 internalization. BRET analysis showed that B7.1 and B7-H1 formed heterodimeric complexes at the cell surface, and that Ad5FB4 penton, the viral capsomere carrying the fiber projection, could negatively interfere with the formation of B7.1/B7-H1 heterodimers, or modify their conformation. As interactors of B7-H1/B7.1 molecules, Ad5FB4 particles and/or their penton capsomeres represent potential therapeutic agents targeting cancer cells that had developed immunoevasion mechanisms.


Assuntos
Adenoviridae/genética , Antígeno B7-1/metabolismo , Antígeno B7-H1/metabolismo , Evasão Tumoral , Animais , Antígeno B7-1/genética , Antígeno B7-H1/genética , Proteínas do Capsídeo/metabolismo , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Técnicas de Transferência de Genes , Vetores Genéticos , Humanos , Leucemia , Camundongos , Ligação Proteica , Multimerização Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ressonância de Plasmônio de Superfície , Proteínas da Cauda Viral/metabolismo , Ligação Viral , Internalização do Vírus
18.
Mol Ther ; 18(5): 1046-53, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20179681

RESUMO

Cancer vaccines based on virus-like particles (VLPs) vectors may offer many advantages over other antigen-delivery systems and represent an alternative to the ex vivo cell therapy approach. In this study, we describe the use of penton-dodecahedron (Pt-Dd) VLPs from human adenovirus type 3 (Ad3) as cancer vaccine vehicle for specific antigens, based on its unique cellular internalization properties. WW domains from the ubiquitin ligase Nedd4 serve as an adapter to bind the antigen to Pt-Dd. By engineering fusion partners of WW with the model antigen ovalbumin (OVA), Pt-Dd can efficiently deliver WW-OVA in vitro and the Pt-Dd/WW complex can be readily internalized by dendritic cells (DCs). Immunization with WW-OVA/Pt-Dd results in 90% protection against B16-OVA melanoma implantation in syngeneic mice. This high level of protection correlates with the development of OVA-specific CD8(+) T cells. Moreover, vaccination with WW-OVA Pt-Dd induces robust humoral responses in mice as shown by the high levels of anti-OVA antibodies (Abs) detected in serum. Importantly, treatment of mice bearing B16-OVA tumors with WW-OVA/Pt-Dd results in complete tumor regression in 100% of cases. Thus, our data supports a dual role of Pt-Dd as antigen-delivery vector and natural adjuvant, able to generate integrated cellular and humoral responses of broad immunogenic complexity to elicit specific antitumor immunity. Antigen delivery by Pt-Dd vector is a promising novel strategy for development of cancer vaccines with important clinical applications.


Assuntos
Adenoviridae/genética , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Imunidade Celular/imunologia , Imunidade Humoral/imunologia , Ovalbumina/imunologia , Proteínas Virais/imunologia , Animais , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Células HeLa , Humanos , Imunoterapia , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos C57BL , Ubiquitina-Proteína Ligases Nedd4 , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Virais/genética
19.
Viruses ; 12(7)2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32630840

RESUMO

Many geometric forms are found in nature, some of them adhering to mathematical laws or amazing aesthetic rules. One of the best-known examples in microbiology is the icosahedral shape of certain viruses with 20 triangular facets and 12 edges. What is less known, however, is that a complementary object displaying 12 faces and 20 edges called a 'dodecahedron' can be produced in huge amounts during certain adenovirus replication cycles. The decahedron was first described more than 50 years ago in the human adenovirus (HAdV3) viral cycle. Later on, the expression of this recombinant scaffold, combined with improvements in cryo-electron microscopy, made it possible to decipher the structural determinants underlying their architecture. Recently, this particle, which mimics viral entry, was used to fish the long elusive adenovirus receptor, desmoglein-2, which serves as a cellular docking for some adenovirus serotypes. This breakthrough enabled the understanding of the physiological role played by the dodecahedral particles, showing that icosahedral and dodecahedral particles live more than a simple platonic story. All these points are developed in this review, and the potential use of the dodecahedron in therapeutic development is discussed.


Assuntos
Adenoviridae/fisiologia , Capsídeo/fisiologia , Infecções por Adenoviridae/patologia , Animais , Proteínas do Capsídeo/fisiologia , Microscopia Crioeletrônica , Humanos , Replicação Viral/fisiologia
20.
Viruses ; 12(10)2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992715

RESUMO

The study of viruses causing acute respiratory distress syndromes (ARDS) is more essential than ever at a time when a virus can create a global pandemic in a matter of weeks. Among human adenoviruses, adenovirus of serotype 7 (HAdV7) is one of the most virulent serotypes. This virus regularly re-emerges in Asia and has just been the cause of several deaths in the United States. A critical step of the virus life cycle is the attachment of the knob domain of the fiber (HAd7K) to the cellular receptor desmoglein-2 (DSG2). Complexes between the fiber knob and two extracellular domains of DSG2 have been produced. Their characterization by biochemical and biophysical methods show that these two domains are sufficient for the interaction and that the trimeric HAd7K could accommodate up to three DSG2 receptor molecules. The cryo-electron microscopy (cryo-EM) structure of these complexes at 3.1 Å resolution confirmed the biochemical data, and allowed the identification of the critical amino acid residues for this interaction, which shows similarities with other DSG2 interacting adenoviruses, despite a low homology in the primary sequences.


Assuntos
Adenovírus Humanos/metabolismo , Proteínas do Capsídeo/metabolismo , Desmogleína 2/metabolismo , Síndrome do Desconforto Respiratório/virologia , Infecções por Adenoviridae/virologia , Adenovírus Humanos/patogenicidade , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Microscopia Crioeletrônica , Desmogleína 2/química , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Receptores Virais/química , Receptores Virais/metabolismo , Sorogrupo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA