Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.480
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 631(8019): 73-79, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38867044

RESUMO

Light-emitting diodes (LEDs) based on metal halide perovskites (PeLEDs) with high colour quality and facile solution processing are promising candidates for full-colour and high-definition displays1-4. Despite the great success achieved in green PeLEDs with lead bromide perovskites5, it is still challenging to realize pure-red (620-650 nm) LEDs using iodine-based counterparts, as they are constrained by the low intrinsic bandgap6. Here we report efficient and colour-stable PeLEDs across the entire pure-red region, with a peak external quantum efficiency reaching 28.7% at 638 nm, enabled by incorporating a double-end anchored ligand molecule into pure-iodine perovskites. We demonstrate that a key function of the organic intercalating cation is to stabilize the lead iodine octahedron through coordination with exposed lead ions and enhanced hydrogen bonding with iodine. The molecule synergistically facilitates spectral modulation, promotes charge transfer between perovskite quantum wells and reduces iodine migration under electrical bias. We realize continuously tunable emission wavelengths for iodine-based perovskite films with suppressed energy loss due to the decrease in bond energy of lead iodine in ionic perovskites as the bandgap increases. Importantly, the resultant devices show outstanding spectral stability and a half-lifetime of more than 7,600 min at an initial luminance of 100 cd m-2.

2.
Circulation ; 149(13): 1004-1015, 2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-37886839

RESUMO

BACKGROUND: The adult mammalian heart is incapable of regeneration, whereas a transient regenerative capacity is maintained in the neonatal heart, primarily through the proliferation of preexisting cardiomyocytes. Neonatal heart regeneration after myocardial injury is accompanied by an expansion of cardiac fibroblasts and compositional changes in the extracellular matrix. Whether and how these changes influence cardiomyocyte proliferation and heart regeneration remains to be investigated. METHODS: We used apical resection and myocardial infarction surgical models in neonatal and adult mice to investigate extracellular matrix components involved in heart regeneration after injury. Single-cell RNA sequencing and liquid chromatography-mass spectrometry analyses were used for versican identification. Cardiac fibroblast-specific Vcan deletion was achieved using the mouse strains Col1a2-2A-CreER and Vcanfl/fl. Molecular signaling pathways related to the effects of versican were assessed through Western blot, immunostaining, and quantitative reverse transcription polymerase chain reaction. Cardiac fibrosis and heart function were evaluated by Masson trichrome staining and echocardiography, respectively. RESULTS: Versican, a cardiac fibroblast-derived extracellular matrix component, was upregulated after neonatal myocardial injury and promoted cardiomyocyte proliferation. Conditional knockout of Vcan in cardiac fibroblasts decreased cardiomyocyte proliferation and impaired neonatal heart regeneration. In adult mice, intramyocardial injection of versican after myocardial infarction enhanced cardiomyocyte proliferation, reduced fibrosis, and improved cardiac function. Furthermore, versican augmented the proliferation of human induced pluripotent stem cell-derived cardiomyocytes. Mechanistically, versican activated integrin ß1 and downstream signaling molecules, including ERK1/2 and Akt, thereby promoting cardiomyocyte proliferation and cardiac repair. CONCLUSIONS: Our study identifies versican as a cardiac fibroblast-derived pro-proliferative proteoglycan and clarifies the role of versican in promoting adult cardiac repair. These findings highlight its potential as a therapeutic factor for ischemic heart diseases.


Assuntos
Traumatismos Cardíacos , Células-Tronco Pluripotentes Induzidas , Infarto do Miocárdio , Animais , Humanos , Camundongos , Animais Recém-Nascidos , Proliferação de Células , Coração , Traumatismos Cardíacos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Mamíferos , Miócitos Cardíacos/metabolismo , Regeneração , Versicanas/genética , Versicanas/metabolismo
3.
PLoS Pathog ; 19(1): e1010961, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36626407

RESUMO

CRISPR-based genome editing technology is revolutionizing prokaryotic research, but it has been rarely studied in bacterial plant pathogens. Here, we have developed a targeted genome editing method with no requirement of donor templates for convenient and efficient gene knockout in Xanthomonas oryzae pv. oryzae (Xoo), one of the most important bacterial pathogens on rice, by employing the heterologous CRISPR/Cas12a from Francisella novicida and NHEJ proteins from Mycobacterium tuberculosis. FnCas12a nuclease generated both small and large DNA deletions at the target sites as well as it enabled multiplex genome editing, gene cluster deletion, and plasmid curing in the Xoo PXO99A strain. Accordingly, a non-TAL effector-free polymutant strain PXO99AD25E, which lacks all 25 xop genes involved in Xoo pathogenesis, has been engineered through iterative genome editing. Whole-genome sequencing analysis indicated that FnCas12a did not have a noticeable off-target effect. In addition, we revealed that these strategies are also suitable for targeted genome editing in another bacterial plant pathogen Pseudomonas syringae pv. tomato (Pst). We believe that our bacterial genome editing method will greatly expand the CRISPR study on microorganisms and advance our understanding of the physiology and pathogenesis of Xoo.


Assuntos
Sistemas CRISPR-Cas , Oryza , Xanthomonas , Proteínas de Bactérias/metabolismo , Edição de Genes/métodos , Genoma Bacteriano , Oryza/microbiologia , Plasmídeos , Xanthomonas/genética
4.
Brain ; 147(4): 1294-1311, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38289861

RESUMO

Ischaemic stroke causes neuron loss and long-term functional deficits. Unfortunately, effective approaches to preserving neurons and promoting functional recovery remain unavailable. Oligodendrocytes, the myelinating cells in the CNS, are susceptible to oxygen and nutrition deprivation and undergo degeneration after ischaemic stroke. Technically, new oligodendrocytes and myelin can be generated by the differentiation of oligodendrocyte precursor cells (OPCs). However, myelin dynamics and their functional significance after ischaemic stroke remain poorly understood. Here, we report numerous denuded axons accompanied by decreased neuron density in sections from ischaemic stroke lesions in human brain, suggesting that neuron loss correlates with myelin deficits in these lesions. To investigate the longitudinal changes in myelin dynamics after stroke, we labelled and traced pre-existing and newly-formed myelin, respectively, using cell-specific genetic approaches. Our results indicated massive oligodendrocyte death and myelin loss 2 weeks after stroke in the transient middle cerebral artery occlusion (tMCAO) mouse model. In contrast, myelin regeneration remained insufficient 4 and 8 weeks post-stroke. Notably, neuronal loss and functional impairments worsened in aged brains, and new myelin generation was diminished. To analyse the causal relationship between remyelination and neuron survival, we manipulated myelinogenesis by conditional deletion of Olig2 (a positive regulator) or muscarinic receptor 1 (M1R, a negative regulator) in OPCs. Deleting Olig2 inhibited remyelination, reducing neuron survival and functional recovery after tMCAO. Conversely, enhancing remyelination by M1R conditional knockout or treatment with the pro-myelination drug clemastine after tMCAO preserved white matter integrity and neuronal survival, accelerating functional recovery. Together, our findings demonstrate that enhancing myelinogenesis is a promising strategy to preserve neurons and promote functional recovery after ischaemic stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Camundongos , Animais , Humanos , Idoso , Bainha de Mielina/patologia , Isquemia Encefálica/complicações , Isquemia Encefálica/patologia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/patologia , Oligodendroglia/patologia , Neurônios , Diferenciação Celular/fisiologia
6.
Cereb Cortex ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38602738

RESUMO

Cerebral small vessel disease is the one of the most prevalent causes of vascular cognitive impairment. We aimed to find objective and process-based indicators related to memory function to assist in the detection of memory impairment in patients with cerebral small vessel disease. Thirty-nine cerebral small vessel disease patients and 22 healthy controls were invited to complete neurological examinations, neuropsychological assessments, and eye tracking tasks. Eye tracking indicators were recorded and analyzed in combination with imaging features. The cerebral small vessel disease patients scored lower on traditional memory task and performed worse on eye tracking memory task performance compared to the healthy controls. The cerebral small vessel disease patients exhibited longer visit duration and more visit count within areas of interest and targets and decreased percentage value of total visit duration on target images to total visit duration on areas of interest during decoding stage among all levels. Our results demonstrated the cerebral small vessel disease patients performed worse in memory scale and eye tracking memory task, potentially due to their heightened attentional allocation to nontarget images during the retrieval stage. The eye tracking memory task could provide process-based indicators to be a beneficial complement to memory assessment and new insights into mechanism of memory impairment in cerebral small vessel disease patients.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Disfunção Cognitiva , Humanos , Tecnologia de Rastreamento Ocular , Transtornos da Memória/diagnóstico por imagem , Transtornos da Memória/etiologia , Doenças de Pequenos Vasos Cerebrais/complicações , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Cognição
7.
J Mol Cell Cardiol ; 191: 7-11, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38608929

RESUMO

Neonatal mouse hearts can regenerate post-injury, unlike adult hearts that form fibrotic scars. The mechanism of thyroid hormone signaling in cardiac regeneration warrants further study. We found that triiodothyronine impairs cardiomyocyte proliferation and heart regeneration in neonatal mice after apical resection. Single-cell RNA-Sequencing on cardiac CD45-positive leukocytes revealed a pro-inflammatory phenotype in monocytes/macrophages after triiodothyronine treatment. Furthermore, we observed that cardiomyocyte proliferation was inhibited by medium from triiodothyronine-treated macrophages, while triiodothyronine itself had no direct effect on the cardiomyocytes in vitro. Our study unveils a novel role of triiodothyronine in mediating the inflammatory response that hinders heart regeneration.


Assuntos
Proliferação de Células , Macrófagos , Monócitos , Miócitos Cardíacos , Regeneração , Tri-Iodotironina , Animais , Regeneração/efeitos dos fármacos , Tri-Iodotironina/farmacologia , Monócitos/metabolismo , Monócitos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Camundongos , Inflamação/metabolismo , Inflamação/patologia , Animais Recém-Nascidos , Coração/efeitos dos fármacos , Coração/fisiopatologia , Camundongos Endogâmicos C57BL
8.
J Biol Chem ; 299(10): 105142, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37553040

RESUMO

Nuclear magnetic resonance studies of many physiologically important proteins have long been impeded by the necessity to express such proteins in isotope-labeled form in higher eukaryotic cells and the concomitant high costs of providing isotope-labeled amino acids in the growth medium. Economical routes use isotope-labeled yeast or algae extracts but still require expensive isotope-labeled glutamine. Here, we have systematically quantified the effect of 15N2-glutamine on the expression and isotope labeling of different proteins in insect cells. Sufficient levels of glutamine in the medium increase the protein expression by four to five times relative to deprived conditions. 1H-15N nuclear magnetic resonance spectroscopy shows that the 15N atoms from 15N2-glutamine are scrambled with surprisingly high (60-70%) efficiency into the three amino acids alanine, aspartate, and glutamate. This phenomenon gives direct evidence that the high energy demand of insect cells during baculovirus infection and concomitant heterologous protein expression is predominantly satisfied by glutamine feeding the tricarboxylic acid cycle. To overcome the high costs of supplementing isotope-labeled glutamine, we have developed a robust method for the large-scale synthesis of 15N2-glutamine and partially deuterated 15N2-glutamine-α,ß,ß-d3 from inexpensive precursors. An application is shown for the effective large-scale expression of the isotope-labeled ß1-adrenergic receptor using the synthesized 15N2-glutamine-α,ß,ß-d3.

9.
J Am Chem Soc ; 146(10): 6744-6752, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38422617

RESUMO

Zinc-iodine batteries are one of the most intriguing types of batteries that offer high energy density and low toxicity. However, the low intrinsic conductivity of iodine, together with high polyiodide solubility in aqueous electrolytes limits the development of high-areal-capacity zinc-iodine batteries with high stability, especially at low current densities. Herein, we proposed a hydrophobic polyiodide ionic liquid as a zinc-ion battery cathode, which successfully activates the iodine redox process by offering 4 orders of magnitude higher intrinsic electrical conductivity and remarkably lower solubility that suppressed the polyiodide shuttle in a dual-plating zinc-iodine cell. By the molecular engineering of the chemical structure of the polyiodide ionic liquid, the electronic conductivity can reach 3.4 × 10-3 S cm-1 with a high Coulombic efficiency of 98.2%. The areal capacity of the zinc-iodine battery can achieve 5.04 mAh cm-2 and stably operate at 3.12 mAh cm-2 for over 990 h. Besides, a laser-scribing designed flexible dual-plating-type microbattery based on a polyiodide ionic liquid cathode also exhibits stable cycling in both a single cell and 4 × 4 integrated cell, which can operate with the polarity-switching model with high stability.

10.
J Am Chem Soc ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607333

RESUMO

Unraveling the mechanism of chirality transfer across length scales is crucial to the rational development of functional materials with hierarchical chirality. The key obstacle is the lack of structural information, especially at the mesoscopic level. We report herein the structural identification of helical covalent organic frameworks (heliCOFs) with hierarchical chirality, which integrate molecular chirality, channel chirality, and morphology chirality into one crystalline entity. Specifically, benefiting from the highly ordered structure of heliCOFs, the existence of chiral channels at the mesoscopic level has been confirmed by electron crystallography, and the handedness of these chiral channels has been directly determined through the stereopair imaging technique. Accordingly, the chirality transfer in heliCOFs from microscopic to macroscopic levels could be rationalized with a layer-rotating model that has been supported by both crystal structure analysis and theoretical calculations. Observation of chiral channels in heliCOFs not only provides unprecedented data for the understanding of the chirality transfer process but also sheds new light on the rational construction of highly ordered polymeric materials with hierarchical chirality.

11.
Pharmacogenet Genomics ; 34(6): 184-190, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38728170

RESUMO

PURPOSE: This study was the first to evaluate the effect of CYP3A5*3 gene polymorphisms on plasma concentration of perampanel (PER) in Chinese pediatric patients with epilepsy. METHODS: We enrolled 98 patients for this investigation. Plasma PER concentrations were measured using liquid chromatography-tandem mass spectrometry. Leftover samples from standard therapeutic drug monitoring were allocated for genotyping analysis. The primary measure of efficacy was the rate of seizure reduction with PER treatment at the final checkup. RESULTS: The plasma concentration showed a linear correlation with the daily dose taken ( r  = 0.17; P  < 0.05). The ineffective group showed a significantly lower plasma concentration of PER (490.5 ±â€…297.1 vs. 633.8 ±â€…305.5 µg/ml; P  = 0.019). For the mean concentration-to-dose (C/D) ratio, the ineffective group showed a significantly lower C/D ratio of PER (3.2 ±â€…1.7 vs. 3.8 ±â€…2.0; P  = 0.040). The CYP3A5*3 CC genotype exhibited the highest average plasma concentration of PER at 562.8 ±â€…293.9 ng/ml, in contrast to the CT and TT genotypes at 421.1 ±â€…165.6 ng/ml and 260.0 ±â€…36.1 ng/ml. The mean plasma PER concentration was significantly higher in the adverse events group (540.8 ±â€…285.6 vs. 433.0 ±â€…227.2 ng/ml; P  = 0.042). CONCLUSION: The CYP3A5*3 gene's genetic polymorphisms influence plasma concentrations of PER in Chinese pediatric patients with epilepsy. Given that both efficacy and potential toxicity are closely tied to plasma PER levels, the CYP3A5*3 genetic genotype should be factored in when prescribing PER to patients with epilepsy.


Assuntos
Anticonvulsivantes , Citocromo P-450 CYP3A , Epilepsia , Nitrilas , Piridonas , Humanos , Citocromo P-450 CYP3A/genética , Criança , Feminino , Masculino , Epilepsia/tratamento farmacológico , Epilepsia/genética , Nitrilas/farmacocinética , Piridonas/farmacocinética , Piridonas/administração & dosagem , Piridonas/efeitos adversos , Pré-Escolar , Anticonvulsivantes/farmacocinética , Anticonvulsivantes/administração & dosagem , Anticonvulsivantes/efeitos adversos , Polimorfismo de Nucleotídeo Único/genética , Genótipo , Adolescente , Povo Asiático/genética , População do Leste Asiático
12.
Clin Immunol ; 264: 110235, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38710348

RESUMO

BACKGROUND: The early diagnosis of systemic lupus erythematosus (SLE) and the assessment of disease activity progression remain a great challenge. Targeted metabolomics has great potential to identify new biomarkers of SLE. METHODS: Serum from 44 healthy participants and 89 SLE patients were analyzed using HM400 high-throughput targeted metabolomics. Machine learning (ML) with seven learning models and trained the model several times iteratively selected the two best prediction model in a competitive way, which were independent validated by enzyme-linked immunosorbent (ELISA) with 90 SLE patients. RESULTS: In this study, 146 differential metabolites, most of them organic acids, amino acids, and bile acids, were detected between patients with initial SLE and healthy participants, and 8 potential biomarkers were found by intersection of ML and statistics (area under the curve [AUC] > 0.95) showing a significant positive correlation with clinical indicators. In addition, we identified and validated 2 potential biomarkers for SLE classification (P < 0.05, AUC > 0.775; N-Methyl-L-glutamic acid, L-2-aminobutyric acid) showing a significant correlation with the SLE Disease Activity Index. These differential metabolites were mainly involved in metabolic pathways, amino acid biosynthesis, 2-oxocarboxylic acid metabolism and other pathways. CONCLUSION: This study indicated that the tricarboxylic acid cycle might be associated with SLE drug therapy. We identified 8 diagnostic models biomarkers and 2 biomarkers that could be used to identify initial SLE and distinguish different activity degree, which will promote the development of new tools for the diagnosis and evaluation of SLE.


Assuntos
Biomarcadores , Diagnóstico Precoce , Lúpus Eritematoso Sistêmico , Aprendizado de Máquina , Metabolômica , Humanos , Lúpus Eritematoso Sistêmico/diagnóstico , Lúpus Eritematoso Sistêmico/sangue , Biomarcadores/sangue , Metabolômica/métodos , Feminino , Adulto , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Estudos de Casos e Controles
13.
Small ; 20(14): e2308547, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37988646

RESUMO

Magnetic resonance imaging contrast agents are frequently used in clinics to enhance the contrast between diseased and normal tissues. The previously reported poly(acrylic acid) stabilized exceedingly small gadolinium oxide nanoparticles (ES-GdON-PAA) overcame the problems of commercial Gd chelates, but limitations still exist, i.e., high r2/r1 ratio, long blood circulation half-life, and no data for large scale synthesis and formulation optimization. In this study, polymaleic acid (PMA) is found to be an ideal stabilizer to synthesize ES-GdONs. Compared with ES-GdON-PAA, the PMA-stabilized ES-GdON (ES-GdON-PMA) has a lower r2/r1 ratio (2.05, 7.0 T) and a lower blood circulation half-life (37.51 min). The optimized ES-GdON-PMA-9 has an exceedingly small particle size (2.1 nm), excellent water dispersibility, and stability. A facile, efficient, and environmental friendly synthetic method is developed for large-scale synthesis of the ES-GdONs-PMA. The weight of the optimized freeze-dried ES-GdON-PMA-26 synthesized in a 20 L of reactor reaches the kilogram level. The formulation optimization is also finished, and the concentrated ES-GdON-PMA-26 formulation (CGd = 100 mm) after high-pressure steam sterilization possesses eligible physicochemical properties (i.e., pH value, osmolality, viscosity, and density) for investigational new drug application.


Assuntos
Meios de Contraste , Nanopartículas , Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos , Gadolínio/química , Nanopartículas/química
14.
Small ; : e2309842, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38431935

RESUMO

Triple negative breast cancer (TNBC) cells have a high demand for oxygen and glucose to fuel their growth and spread, shaping the tumor microenvironment (TME) that can lead to a weakened immune system by hypoxia and increased risk of metastasis. To disrupt this vicious circle and improve cancer therapeutic efficacy, a strategy is proposed with the synergy of ferroptosis, immunosuppression reversal and disulfidptosis. An intelligent nanomedicine GOx-IA@HMON@IO is successfully developed to realize this strategy. The Fe release behaviors indicate the glutathione (GSH)-responsive degradation of HMON. The results of titanium sulfate assay, electron spin resonance (ESR) spectra, 5,5'-Dithiobis-(2-nitrobenzoic acid (DTNB) assay and T1 -weighted magnetic resonance imaging (MRI) demonstrate the mechanism of the intelligent iron atom (IA)-based cascade reactions for GOx-IA@HMON@IO, generating robust reactive oxygen species (ROS). The results on cells and mice reinforce the synergistic mechanisms of ferroptosis, immunosuppression reversal and disulfidptosis triggered by the GOx-IA@HMON@IO with the following steps: 1) GSH peroxidase 4 (GPX4) depletion by disulfidptosis; 2) IA-based cascade reactions; 3) tumor hypoxia reversal; 4) immunosuppression reversal; 5) GPX4 depletion by immunotherapy. Based on the synergistic mechanisms of ferroptosis, immunosuppression reversal and disulfidptosis, the intelligent nanomedicine GOx-IA@HMON@IO can be used for MRI-guided tumor therapy with excellent biocompatibility and safety.

15.
J Antimicrob Chemother ; 79(1): 27-35, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37944030

RESUMO

BACKGROUND: The spread of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) among humans and food-producing animals has been widely reported. However, the transmission routes and associated risk factors remain incompletely understood. METHODS: Here, we used commensal Escherichia coli bacteria strains from faeces of pigs and local citizens [HEG: high exposure group (pig breeders, butchers or restaurant chefs) and LEG: low exposure group (other occupations)] to explore the dynamics of ARB and ARG transmission between animals and humans. RESULTS: Most ARGs (96%) present in pigs were shared with humans. Carriage rates of the shared ARGs suggest two transmission patterns among pigs, the HEG and LEG: one pattern was highest in pigs, gradually decreasing in the HEG and LEG (e.g. floR and cmlA1); the other pattern was increasing from pigs to the HEG but then decreasing in the LEG (e.g. mcr-1.1). Carriage rates of the HEG were higher than in the LEG in both patterns, implicating the HEG as a crucial medium in transmitting ARB and ARGs between food-producing animals and humans. Moreover, frequent inter/intragroup transmission via strains, plasmids and/or mobile elements was evident. Carriage of mcr-1.1 on human-gut-prevalent plasmids possibly promoted its enrichment in the HEG. CONCLUSIONS: The HEG is a crucial factor in transmitting ARB and ARGs between food-producing animals and humans. Rational measures to contain the risks of occupational exposure are urgently needed to keep dissemination of antibiotic resistance in check and safeguard public health.


Assuntos
Genes Bacterianos , Exposição Ocupacional , Humanos , Suínos , Animais , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Resistência Microbiana a Medicamentos , Escherichia coli/genética , Antibacterianos/farmacologia
16.
Yeast ; 41(6): 369-378, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38613186

RESUMO

Engineering Yarrowia lipolytica to produce astaxanthin provides a promising route. Here, Y. lipolytica M2 producing a titer of 181 mg/L astaxanthin was isolated by iterative atmospheric and room-temperature plasma mutagenesis and diphenylamine-mediated screening. Interestingly, a negative correlation was observed between cell biomass and astaxanthin production. To reveal the underlying mechanism, RNA-seq analysis of transcriptional changes was performed in high producer M2 and reference strain M1, and a total of 1379 differentially expressed genes were obtained. Data analysis revealed that carbon flux was elevated through lipid metabolism, acetyl-CoA and mevalonate supply, but restrained through central carbon metabolism in strain M2. Moreover, upregulation of other pathways such as ATP-binding cassette transporter and thiamine pyrophosphate possibly provided more cofactors for carotenoid hydroxylase and relieved cell membrane stress caused by astaxanthin insertion. These results suggest that balancing cell growth and astaxanthin production may be important to promote efficient biosynthesis of astaxanthin in Y. lipolytica.


Assuntos
Perfilação da Expressão Gênica , Xantofilas , Yarrowia , Yarrowia/genética , Yarrowia/metabolismo , Xantofilas/metabolismo , Engenharia Metabólica , Transcriptoma , Regulação Fúngica da Expressão Gênica , Redes e Vias Metabólicas/genética , Análise do Fluxo Metabólico , Metabolismo dos Lipídeos , Biomassa
17.
Toxicol Appl Pharmacol ; 485: 116915, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38537875

RESUMO

N-myc downstream-regulated gene 2 (NDRG2) has been recognised as a negative regulator of the progression of numerous tumours, yet its specific role in small-cell lung carcinoma (SCLC) is not fully understood. The purpose of the current study was to investigate the biological role and mechanism of NDRG2 in SCLC. Initial investigation using the Gene Expression Omnibus (GEO) dataset revealed marked downregulation of NDRG2 transcripts in SCLC. The decreased abundance of NDRG2 in SCLC was verified by examining clinical specimens. Increasing NDRG2 expression in SCLC cell lines caused significant changes in cell proliferation, cell cycle progression, colony formation, and chemosensitivity. NDRG2 overexpression decreased the levels of phosphorylated PTEN, AKT and mTOR. In PTEN-depleted SCLC cells, the upregulation of NDRG2 did not result in any noticeable impact on AKT or mTOR activation. Additionally, the reactivation of AKT reversed the antitumour effects of NDRG2 in SCLC cells. Notably, increasing NDRG2 expression retarded the growth of SCLC cell-derived xenografts in vivo. In conclusion, NDRG2 serves as an inhibitor of SCLC, and its cancer-inhibiting effects are achieved through the suppression of AKT/mTOR via the activation of PTEN. This work suggests that NDRG2 is a potential druggable target for SCLC treatment.


Assuntos
Proliferação de Células , Neoplasias Pulmonares , Camundongos Nus , PTEN Fosfo-Hidrolase , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Carcinoma de Pequenas Células do Pulmão , Serina-Treonina Quinases TOR , Proteínas Supressoras de Tumor , Humanos , Serina-Treonina Quinases TOR/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Carcinoma de Pequenas Células do Pulmão/patologia , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Linhagem Celular Tumoral , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Camundongos , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Feminino , Masculino , Camundongos Endogâmicos BALB C , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Toxicol Appl Pharmacol ; 489: 117005, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38880190

RESUMO

A remarkable cancer-related role of zinc finger protein 367 (ZNF367) has been demonstrated in multiple malignancies. However, whether ZNF367 has a role in small-cell lung cancer (SCLC) remains unexplored. The purpose of this work was to explore the potential role and mechanism of ZNF367 in SCLC. In silico analysis using the Gene Expression Omnibus (GEO) dataset revealed high levels of the ZNF367 transcript in SCLC. Examination of clinical tissues confirmed the significant abundance of ZNF367 in SCLC tissues compared with adjacent non-malignant tissues. The genetic depletion of ZNF367 in SCLC cells led to remarkable alterations in cell proliferation, the cell cycle, colony formation and chemosensitivity. Mechanistically, ZNF367 was shown to regulate the activation of yes-associated protein (YAP) associated with the up-regulation of phosphorylated large tumour suppressor kinase 2 (LATS2). Further investigation revealed that ZNF367 affected the LATS2-YAP cascade by regulating the expression of citron kinase (CIT). Re-expression of constitutively active YAP diminished the tumour-inhibiting function of ZNF367 depletion. Xenograft experiments confirmed the tumour-inhibiting effect of ZNF367 depletion in vivo. In summary, our results demonstrate that the inhibition of ZNF367 displays anticancer effects in SCLC by inhibiting YAP activation, suggesting it as a potential druggable oncogenic target.


Assuntos
Neoplasias Pulmonares , Camundongos Nus , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Carcinoma de Pequenas Células do Pulmão , Fatores de Transcrição , Proteínas Supressoras de Tumor , Proteínas de Sinalização YAP , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologia , Carcinoma de Pequenas Células do Pulmão/metabolismo , Animais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Proteínas de Sinalização YAP/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Camundongos Endogâmicos BALB C , Masculino , Feminino , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Stem Cells ; 41(10): 916-927, 2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37549235

RESUMO

Aging is a gradual process that is coupled with a decline in the regenerative capacity of stem cells and a subsequent reduction in tissue function and repair. Hydrogen sulfide (H2S) plays an important role in maintaining the function of stem cells. The present study aimed to investigate the role of H2S in mesenchymal stem cell aging and the underlying mechanism and to provide novel insights into stem cell therapies in elderly people. Bone marrow mesenchymal stem cells (BMMSCs) were isolated from young mice (2 months) and from old mice (12 months). Senescence-associated ß-galactosidase (SA-ß-Gal) activity, reactive oxygen species (ROS) production, ROS scavenging enzymes, and the expression of cell-cycle-related genes were compared between those young and old BMMSCs. The expression of H2S-producing enzymes and the production of H2S in BMMSCs were examined. In vitro osteogenic differentiation and cell senescence were analyzed in young and old BMMSCs before and after H2S treatment. The underlying mechanism was investigated using calcineurin and NFAT1 inhibitors or a Foxp3 siRNA. Bone volume/tissue volume (BV/TV) of femurs in mice was examined using micro-CT with or without systemic injection of an H2S donor. Here, we found that H2S levels in BMMSCs declined with age. When the generation of H2S was blocked with the CBS inhibitor hydroxylamine and the CSE inhibitor dl-propargylglycine, BMMSCs underwent senescence. The elevation of H2S levels rescued BMMSC function in vitro and prevented bone loss in vivo. Mechanistically, H2S represses cell aging via the calcineurin-NFAT1 signaling pathway.

20.
Respir Res ; 25(1): 50, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254098

RESUMO

BACKGROUND: Several researches have demonstrated that patients with sarcoidosis accompanied with the abnormality in blood glucose and/or lipids, however, the causal relationship between them remains uncertain. To elucidate the potential association and causality of blood glucose and lipids with sarcoidosis, we conducted a propensity score matching (PSM)-based observational study combined with mendelian randomization (MR) analysis. METHODS: All subjects in this study were retrospectively collected from Tongji Hospital during 2010 and 2023. 1:1 PSM was employed to control the potential confounders as appropriate. Univariable and multivariable logistic regression analyses were performed to estimate the associations of sarcoidosis with fasting glucose, high density lipoprotein cholesterol (HDLC), low density lipoprotein cholesterol (LDLC), total cholesterol (TC), and total triglyceride (TG). The further subtype analysis was also conducted. Afterwards, a bidirectional MR analysis based on public data deeply explored the causality among the 5 candidate traits and sarcoidosis, for which the inverse-variance weighted (IVW) method was utilized as the main inferring approach. RESULTS: In the observational study, a total number of 756 subjects were enrolled, with 162 sarcoidosis patients and 594 non-sarcoidosis participants, while 160 pairs of subjects were matched after PSM. Multivariable logistic regression analysis indicated that HDLC (OR: 0.151; 95% CI: 0.056-0.408; P < 0.001) and TC (OR: 3.942; 95% CI: 2.644-5.877; P < 0.001) were strongly associated with sarcoidosis. Subtype analysis showed that low HDLC was independently correlated to risk of lesions in bronchus and lungs, and mediastinal lymph nodes, while high TC was to cervical lymph nodes. In MR analysis, high fasting glucose, low HDLC, and high TC were identified as the causal factors of sarcoidosis. CONCLUSION: HDLC and TC had the potential to influence the risk of sarcoidosis, which could be regarded as predictors and may provide new diagnostic and therapeutic targets for sarcoidosis.


Assuntos
Glicemia , Sarcoidose , Humanos , Análise da Randomização Mendeliana , Estudos Retrospectivos , Glucose , Sarcoidose/diagnóstico , Sarcoidose/epidemiologia , Sarcoidose/genética , Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA