Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem A ; 126(7): 1289-1299, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35166555

RESUMO

We present an improved inverse-design approach for automatically identifying molecular (or other) systems with optimal values for prechosen properties. The new approach uses SMILES (simplified molecular input line entry system) to describe molecular structures efficiently, a genetic algorithm to optimize the molecules automatically, and the DFTB+ (self-consistent charge density functional tight-binding) method to calculate electronic properties. Thereby, almost every class of materials─even macromolecules or monomers─can be studied easily. Without crossover operators but with only mutation operators, the genetic algorithm is more adaptive to SMILES while keeping its efficiency. DFTB+ is more accurate than the DFTB method used in our previous inverse-design approach for the study of excited states and charge transfer processes. The improved approach is applied to optimize benzene, pyridine, pyridazine, pyrimidine, and pyrazine derivatives for seven electronic properties, which all are highly relevant and important for the performance of molecules in solar cells. We found that for some electronic properties, the precise composition and structure of the backbone have remarkable impacts on the value of the electronic properties and/or on the set of functional groups that leads to the best performance. On the contrary, for other properties, these effects are less pronounced. The reasonable optimal functional groups and/or substitution patterns are reported.

2.
Soft Matter ; 16(2): 383-389, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31830193

RESUMO

Reverse micellar systems possess a characteristic nanoscale water-in-oil (w/o) structure and can offer mild conditions as a unique and versatile reaction medium. Reverse microemulsions containing water/TX-100 + hexanol/hexane are studied in this work through experimental techniques and simulation methods. Surfactant dosages and water amount affect the micellar structure profoundly, and the polydispersity of the surfactant molecules affects the micellar structure remarkably. TX-100 with 9-10 EO units can form micelles in a simply piling way, while TX-100 with 5-10 EO units endows the micelles with a hierarchical micellar interface and a more compact structure, leading to monodisperse micelles with a smaller diameter. Water in the polar cores has three states. In the reverse micellar system using TX-100 with 9-10 EO units, hydrolysis of tetraethoxysilane happens rapidly and the formed silica gels are apt to aggregate, resulting in polydisperse silica nanoparticles. For the micellar system using TX-100 with 5-10 EO units, the micellar hierarchical distributed interface facilitates the material exchange of tetraethoxysilane and limits the hydrolysis of tetraethoxysilane inside the micelles, providing monodisperse silica nanoparticles.

3.
Phys Chem Chem Phys ; 22(8): 4508-4515, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32068228

RESUMO

Interfacial adsorption configuration plays a crucial role in influencing the photovoltaic performance of dye-sensitized solar cells (DSSCs), and thus, theoretical investigations are needed to further understand the impacts of different absorption configurations on stoichiometric and defective TiO2(101) surfaces on the short-circuit photocurrent density (JSC) and open-circuit voltage (VOC) of DSSCs. Herein, calculations of isolated dyes and dye/TiO2 systems were performed on the donor-π bridge-acceptor (D-π-A) type porphyrin sensitizers bearing different donor moieties and an α-cyanoacrylic acid anchoring group (T1-3), using DFT and TD-DFT methods. And, for the first time, comparative analysis of interfacial electron transfer (IET) and density of states (DOS) were carried out on dye/TiO2 systems with stoichiometric and defective surfaces to provide further insight into the electronic factors influencing the efficiency of DSSCs, which can well explain the experimental variation trends of JSC and VOC values. It turned out that attachment via the carboxyl and cynao groups in a tridentate binding mode can result in more efficient IET rates and an upshifted conduction band in comparison with those of the bidentate attachment. More interestingly, we found that the adsorption configuration on defective surfaces containing an O2c vacancy induced more upshifted CBM and relatively fast IET, especially for the bonding mode through two O atoms of the carboxyl group.

4.
Angew Chem Int Ed Engl ; 59(11): 4354-4359, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-31913559

RESUMO

Herein, for the first time, we present the successful synthesis of a novel two-dimensional corrole-based covalent organic framework (COF) by reacting the unusual approximately T-shaped 5,10,15-tris(p-aminophenyl)corrole H3 TPAPC with terephthalaldehyde, which adopts desymmetrized hcb topology and consists of a staggered AB stacking structure with elliptical pores. The resultant corrole-based COF, TPAPC-COF, exhibits high crystallinity and excellent chemical stability. The combination of extended π-conjugated backbone and interlayer noncovalent π-π interactions endows TPAPC-COF with excellent absorption capability in the entire visible-light and even near-infrared regions. Moreover, this work suggests the promise of TPAPC-COF as a new class of photoactive material for efficient singlet-oxygen generation with potential photodynamic therapy application as demonstrated by in vitro anticancer studies.

5.
J Am Chem Soc ; 141(36): 14443-14450, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31431009

RESUMO

The corrole unit from the porphyrinoid family represents one of the most important ligands in the field of coordination chemistry, which creates a unique environment allowing for the observation of unusual electronic states of bound metal cations and has shown great promise in various applications. Nevertheless, studies that directly and systematically introduce these motifs in porous crystalline materials for targeting further functionalizations are still lacking. Herein, we report for the first time the construction of two robust corrole-based metal-organic frameworks (MOFs), M6(µ3-O)4(µ3-OH)4(OH)3(H2O)3(H3TCPC)3 (M = Zr for Corrole-MOF-1 and M = Hf for Corrole-MOF-2, H3TCPC = 5,10,15-tris(p-carboxylphenyl)corrole), which are assembled by a custom-designed C2ν-symmetric corrolic tricarboxylate ligand and the unprecedented D3d-symmetric 9-connected Zr6/Hf6 clusters. The resultant frameworks feature a rare (3,9)-connected gfy net and exhibit high chemical stability in aqueous solutions within a wide range of pH values. Furthermore, we successfully prepared the cationic Corrole-MOF-1(Fe) from the iron corrole ligand, which can serve as an efficient heterogeneous catalyst for [4 + 2] hetero-Diels-Alder reactions between unactivated aldehydes and a simple diene, outperforming both the homogeneous counterpart and the porphyrinic MOF counterpart.

6.
Small ; 15(39): e1902237, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31389174

RESUMO

Halide perovskites have emerged as a type of extremely promising material for their diverse chemical and electronic structures along with their brilliant optoelectronic properties. The introduction of chirality into perovskite scaffolds, generating a novel concept of chiral perovskite materials, offers an immense step forward toward the development of smart optoelectronic and spintronic materials and devices. The present Review summarizes recent advances in such an emerging field regarding the design and construction of chiral perovskite materials, along with their optoelectronic performances. In addition, an outlook of future challenges as well as the potential significance of the chiral perovskite family on the optical communication is proposed.

7.
Phys Chem Chem Phys ; 21(10): 5834-5844, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30806399

RESUMO

Dye-sensitized solar cells (DSSCs) have attracted much interest during the past few decades. However, it is still a tremendous challenge to identify organic molecules that give an optimal power conversion efficiency (PCE). Here, we apply our recently developed, inverse-design method for this issue with the special aim of identifying porphyrins with promisingly high PCE. It turns out that the calculations lead to the prediction of 15 new molecules with optimal performances and for which none so far has been studied. These porphyrin derivatives will in the near future be synthesized and subsequently tested experimentally. Our inverse-design approach, PooMa, is based on the strategy of providing suggestions for molecular systems with optimal properties. PooMa has been developed as a tool that requires minimal resources and, therefore, builds on various approximate methods. It uses genetic algorithm to screen thousands (or often more) of molecules. For each molecule, the density-functional tight-binding (DFTB) method is used for calculating the electronic properties. In the present work, five different electronic properties are determined, all of which are related to optical performance. Subsequently, a quantitative structure-property relationship (QSPR) model is constructed that can predict the PCE through those five electronic properties. Finally, we benchmark our results through more accurate DFT calculations that give further information on the predicted optimal molecules.

8.
J Nanosci Nanotechnol ; 19(6): 3669-3672, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30744804

RESUMO

Organic-inorganic hybrid perovskite single crystals have attracted much attention due to their superior optoelectronic properties. Herein, we report a facile vapor-solution sequential route to prepare single-crystalline nanosheets of hybrid lead triiodide perovskite. It is found that this two-step deposition is able to fabricate sizeable high-quality single-crystalline nanosheets with no need of delicate control of crystallization conditions such as concentration or temperature for normal single crystal growth. The resulting perovskite nanosheets show good reproducibility and single crystallinity with bright and uniform photoluminescence. Our study provides a promising strategy for scalable fabrication of perovskite single crystals with great potential in optoelectronic applications.

9.
Nano Lett ; 18(9): 5411-5417, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30102548

RESUMO

Hybrid organic/inorganic lead halide perovskites (LHPs) have recently emerged as extremely promising photonic materials. However, the exploration of their optical nonlinearities has been mainly focused on the third- and higher-order nonlinear optical (NLO) effects. Strong second-order NLO responses are hardly expected from ordinary LHPs due to their intrinsic centrosymmetric structures, but are highly desirable for advancing their applications in the next generation integrated photonic circuits. Here we demonstrate the fabrication of a novel noncentrosymmetric LHP material by introducing chiral amines as the organic component. The nanowires grown from this new LHP material crystallize in a noncentrosymmetric P1 space group and demonstrate highly efficient second harmonic generation (SHG) with high polarization ratios and chiroptical NLO effects. Such a chiral perovskite skeleton could provide a new platform for future engineering of optoelectronic functionalities of hybrid perovskite materials.

10.
Beilstein J Org Chem ; 15: 1434-1440, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293693

RESUMO

Isoxazoline-linked porphyrins have been synthesized by a regioselective 1,3-dipolar cycloaddition reaction between vinylporphyrin 2 and nitrile oxides. The steric interaction directed the reaction trajectory, in which only the product with a link between the 5-position of the isoxazoline and the ß-position of porphyrin was observed. The isoxazoline-porphyrins 3a,b have been characterized by absorption, emission, 1H NMR and mass spectra. Later, the crystal structure of 3a was obtained and confirmed the basic features of the NMR-derived structure. Furthermore, a pair of enantiomers of 3a presented in the crystal, which formed a dimeric complex through intermolecular coordination between the Zn2+ center and the carbonyl group of the second molecule.

11.
J Am Chem Soc ; 140(37): 11716-11725, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30153411

RESUMO

All-inorganic lead halide perovskites demonstrate improved thermal stability over the organic-inorganic halide perovskites, but the cubic α-CsPbI3 with the most appropriate bandgap for light harvesting is not structurally stable at room temperature and spontaneously transforms into the undesired orthorhombic δ-CsPbI3. Here, we present a new member of black-phase thin films of all-inorganic perovskites for high-efficiency photovoltaics, the orthorhombic γ-CsPbI3 thin films with intrinsic thermodynamic stability and ideal electronic structure. Exempt from introducing organic ligands or incorporating mixed cations/anions into the crystal lattice, we stabilize the γ-CsPbI3 thin films by a simple solution process in which a small amount of H2O manipulates the size-dependent phase formation through a proton transfer reaction. Theoretical calculations coupled with experiments show that γ-CsPbI3 with a lower surface free energy becomes thermodynamically preferred over δ-CsPbI3 at surface areas greater than 8600 m2/mol and exhibits comparable optoelectronic properties to α-CsPbI3. Consequently, γ-CsPbI3-based solar cells display a highly reproducible efficiency of 11.3%, among the highest records for CsPbI3 thin-film solar cells, with robust stability in ambient atmosphere for months and continuous operating conditions for hours. Our study provides a novel and fundamental perspective to overcome the Achilles' heel of the inorganic lead iodide perovskite and opens it up for high-performance optoelectronic devices.

12.
Chemistry ; 23(47): 11375-11384, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28612992

RESUMO

Complexation of group 11 metal cations with an α-bis(phenylthio)-substituted trans-doubly N-confused porphyrin (trans-N2 CPSPh : 4) afforded a series of square-planar trivalent organometallic complexes (i.e., Cu-H4, Ag-H4, and Au-H4). The X-ray crystal structures of the complexes revealed highly planar core geometries along with the presence of peripheral amine and imine nitrogen sites of the pyrrolic moieties. NMR, UV/Vis absorption, and magnetic circular dichroism (MCD) spectroscopies suggested the 18 π-electron aromaticity of the complexes. The aromaticity was also fully analyzed by various theoretical methodologies such as nucleus-independent chemical shift (NICS) and anisotropic induced current density (ACID) calculations. The central metal affects the amphiprotic character of the complexes possessing both pyrrolic amino nitrogen and imino nitrogen atoms at the periphery, which was examined by the photometric titration with trifluoroacetic acid (TFA) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), respectively. The inherent acidity of the complexes was followed in the order; Cu-H4>Au-H4>Ag-H4 and that of basicity was Au-H4>Ag-H4>Cu-H4. The complexes could be considered as an "expanded imidazole" structural motif.

13.
Phys Chem Chem Phys ; 19(42): 28867-28875, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29057410

RESUMO

Three donor-π conjugated unit-acceptor (D-π-A) type zinc porphyrin sensitizers LX1, LX2 and LX3 bearing meso acrylic acid, α-cyanoacrylic acid, and α-cyanopentadienoic acid, respectively, as the π-bridged acceptors were designed and synthesized for use in dye-sensitized solar cells (DSCs). The interesting role of the cyano group attached to the α position of the acrylic and pentadienoic acid acceptor was investigated. It was shown that even though the introduction of the cyano group and the elongation of the π-bridge can both increase the light-harvesting as indicated by the UV-vis absorption spectra, the relevant cell performance dropped significantly. The photo to power conversion efficiencies (PCEs) of the devices increase in the order of LX1 > LX2 > LX3, with the highest PCE of 6.04% achieved for the LX1-based cell, which bears acrylic acid as the π-bridged acceptor. To further explore the effect of -CN and -CH[double bond, length as m-dash]CH- on the interaction between the absorbed dye and TiO2 substrates, their density of states (DOS) and partial density of states (PDOS), as well as electronic properties were investigated in detail using theoretical calculations. The results suggest that introducing the -CN group into the acceptor and extending the conjugation of the π-bridge have decreased the LUMO levels of the dyes, leading to weak interfacial coupling, low electron injection driving force, low Jsc, and thus poor cell performance.

14.
J Am Chem Soc ; 138(43): 14380-14387, 2016 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-27718567

RESUMO

Interfacial engineering of the meso-TiO2 surface through a modified sequential deposition procedure involving a novel PbI2-HMPA complex pretreatment is conducted as a reproducible method for preparing MAPbI3 based perovskite solar cells providing the highest efficiencies yet reported with the polymer HTM layer. Grazing-incidence X-ray diffraction depth profiling confirms the formation of a perovskite film with a PbI2-rich region close to the electron transport layer (ETL) due to the strong interaction of HMPA with PbI2, which successfully retarded the dissolution of the PbI2 phase when depositing the perovskite layer on top. These results are further confirmed by energy-dispersive X-ray spectroscopy performed in a scanning transmission electron microscope, which reveals that the I/Pb ratio in samples treated with the complex is indeed reduced in the vicinity of the ETL contact when compared to samples without the treatment. The engineered interface leads to an average power conversion efficiency of 19.2% (reverse scan, standard deviation SD < 0.2) over 30 cells (best cell at 19.5% with high FF of 0.80).

15.
Langmuir ; 31(14): 4330-40, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25798879

RESUMO

The shapes and properties of self-assembled materials can be adjusted easily using environmental stimuli. Yet, the stimulus-triggered shape evolution of organic microspheres in aqueous solution has rarely been reported so far. Here, a novel type of poly(allylamine hydrochloride)-g-porphyrin microspheres (PAH-g-Por MPs) was prepared by a Schiff base reaction between 2-formyl-5,10,15,20-tetraphenylporphyrin (Por-CHO) and PAH doped in 3.5-µm CaCO3 microparticles, followed by template removal. The PAH-g-Por MPs had an average diameter of 2.5 µm and could be transformed into one-dimensional nanorods (NRs) and wormlike nanostructures (WSs) after being incubated for different times in pH 1-4 HCl solutions. The rate and degree of hydrolysis had a significant effect on the formation and morphologies of the nanorods. The NRs@pH1, NRs@pH2, and NRs@pH3 were all composed of the released Por-CHO and the unhydrolyzed PAH-g-Por because of the incomplete hydrolysis of the Schiff base. However, the WSs@pH4 were formed by a pure physical shape transformation, because they had the same composition as the PAH-g-Por MPs and the Schiff base bonds were not hydrolyzed. The self-assembled NRs and WSs exhibited good colloidal stability and could emit stable red fluorescence over a relatively long period of time.

16.
Phys Chem Chem Phys ; 17(45): 30624-31, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26523537

RESUMO

A series of D-π-A zinc porphyrin sensitizers bearing a substituted iminodibenzyl group at the porphyrin meso position, which is expected to have different electron-donating abilities, were designed. Theoretical studies were performed to examine the photovoltaic properties of these molecules in dye-sensitized solar cells (DSSCs). In particular, the important concepts, the Fukui function and the extended condensed Fukui function, are employed to describe the electron-donating abilities accurately at the quantitative level. Tangui Le Bahers model was adopted to analyze charge transfer (CT) during electron transition. A correlation between the electron donating abilities of the derived iminodibenzyl group and CT was built to evaluate the cell performance based on sensitizers . The theoretical studies showed that porphyrins bearing an extremely strong electron-donating group (EDG) would fail in the generation of photocurrent in the closed circuit when applied in DSSCs due to the higher level of the HOMO energy than the redox potential of the redox couple (I(-)/I3(-)). The one with a weaker EDG () is expected to show better photovoltaic performance than porphyrin with an unsubstituted iminodibenzyl group. This study demonstrates a reliable method involving the employment of the Fukui function, the extended condensed Fukui function and the Tangui Le Bahers model for the evaluation of newly designed D-π-A type porphyrin sensitizers for use in DSSCs, and as guidance for future molecular design.

17.
Soft Robot ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38781417

RESUMO

Continuum manipulators can improve spatial adaptability and operational flexibility in constrained environments by endowing them with contraction and extension capabilities. There are currently desired requirements to quantify the shape of an extensible continuum manipulator for strengthening its obstacle avoidance capability and end-effector position accuracy. To address these issues, this study proposes a methodology of using silicone rubber strain sensors (SRSS) to estimate the shape of an extensible continuum manipulator. The way is to measure the strain at specific locations on the deformable body of the manipulator, and then reconstruct the shape by integrating the information from all sensors. The slender sensors are fabricated by a rolling process that transforms planar silicone rubber sensors into cylindrical structures. The proprioceptive model relationship between the strain of the sensor and the deformation of the manipulator is established with considering the phenomenon of torsion of the manipulator caused by compression. The physically extensible continuum manipulator equipped with three driving tendons and nine SRSS was designed. Comprehensive evaluations of various motion trajectories indicate that this method can accurately reconstruct the shape of the manipulator, especially under end-effector loads. The experimental results demonstrate that the mean (maximum) absolute position error of the endpoint is 1.61% (3.45%) of the manipulator length.

18.
Heliyon ; 10(5): e26907, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38449663

RESUMO

To meet the requirements of diagnosis and treatment, photodynamic therapy (PDT) is a promising cancer treatment with less side-effect. A series of novel BODIPY complexes (BODIPY-CDs) served as PDT agents were first reported to enhance the biocompatibility and water solubility of BODIPY matrix through the click reaction of alkynyl-containing BODIPY and azide-modified cyclodextrin (CD). BODIPY-CDs possessed superior water solubility due to the introduction of CD and their fluorescence emission apparently redshifted (>90 nm) on account of triazole units as the linkers compared to alkynyl-containing BODIPY. Moreover, all the BODIPY-CDs were no cytotoxicity toward NIH 3T3 in different drug concentrations from 12.5 to 200 µg/mL, and had a certain inhibitory effect on tumor HeLa cells. Particularly, BODIPY-ß-CD exhibited high reactive oxygen species generation and excellent photodynamic therapy activity against HeLa cells compared to other complexes. The cell viability of BODIPY-ß-CD was dramatically reduced up to 20% in the concentration of 100 µg/mL upon 808 nm laser irradiation. This architecture might provide a new opportunity to develop valuable photodynamic therapy agents for tumor cells.

19.
Blood Coagul Fibrinolysis ; 35(4): 155-160, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38625834

RESUMO

Immune thrombocytopenia (ITP) is an autoimmune disease that arises because of self-destruction of circulating platelets. The mechanism remains complicated and lacks a standard clinical treatment. Current first-line and second-line medications for ITP have shown limited effectiveness, necessitating the exploration of new therapeutic options. Sirolimus is a mammalian target of rapamycin (mTOR) inhibitor that has been demonstrated to inhibit lymphocyte activity, indicating potential for SRL in the treatment of ITP. This study aimed to evaluate the clinical efficacy of sirolimus as a second-line drug in patients with ITP. The starting dose of sirolimus for adults ranged from 2 to 4 mg/day, with a maintenance dose of 1 to 2 mg/day. For children, the starting dose was 1-2 mg/day, with a maintenance dose of 0.5-1 mg/day. The dosage could be adjusted if needed to maintain a specific blood concentration of sirolimus, typically between 5 and 15 ng/ml, throughout the treatment period. After 3 months, the overall response rate was 60% (12/20), with 30% of patients (6/20) achieving a complete response (CR) and 30% (6/20) achieving a partial response (PR). The CR rate at 6 months remained consistent with the 3-month assessment. No major adverse events were reported, indicating that sirolimus was well tolerated and safe. Analysis of peripheral blood Treg cell percentages in both the control and ITP showed no significant difference before treatment. The percentage of Treg cells increased after treatment with sirolimus, suggesting that sirolimus increases Treg cells. These findings suggest that sirolimus serves as an effective second-line treatment option for ITP, demonstrating favorable clinical efficacy.


Assuntos
Púrpura Trombocitopênica Idiopática , Sirolimo , Humanos , Sirolimo/uso terapêutico , Feminino , Púrpura Trombocitopênica Idiopática/tratamento farmacológico , Púrpura Trombocitopênica Idiopática/sangue , Masculino , Adulto , Pessoa de Meia-Idade , Adolescente , Adulto Jovem , Criança , Imunossupressores/uso terapêutico , Idoso , Resultado do Tratamento , Pré-Escolar
20.
Chem Asian J ; : e202400556, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937267

RESUMO

Covalent triazine frameworks (CTFs) involving a donor-π bridge-acceptor (D-π-A) structure are considered one of the most promising photocatalytic materials, in which the π bridge is known to play an important role in influencing the photocatalytic performance. So far, much effort has been directed at the designing of the different π bridge structure to facilitate the photo-induced charge separation. However, the orientation of the π bridge units (configurational isomerism) has not been considered. In this paper, a pair of pyridine-bridged D-π-A type CTFs, named TFA-P1-CTF and TFA-P2-CTF, were designed to investigate how the orientation of the π bridge would influence their performance in the photocatalytic oxidation of olefins into carbonyl compounds. Interestingly, due to the superior charge separation capability, TFA-P2-CTF was found to be able to catalyze the reaction more efficiently than TFA-P1-CTF. Our study eventually provided a guide for the design of D-π-A type CTFs as high-performance photocatalytic materials via tuning the configurational isomerism of the π bridge unit for use in chemical transformations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA